Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
1706.06083
Cited By
v1
v2
v3
v4 (latest)
Towards Deep Learning Models Resistant to Adversarial Attacks
19 June 2017
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
Re-assign community
ArXiv (abs)
PDF
HTML
Github (752★)
Papers citing
"Towards Deep Learning Models Resistant to Adversarial Attacks"
50 / 7,067 papers shown
Defense Against Adversarial Attacks Using Feature Scattering-based Adversarial Training
Neural Information Processing Systems (NeurIPS), 2019
Haichao Zhang
Jianyu Wang
AAML
373
241
0
24 Jul 2019
Joint Adversarial Training: Incorporating both Spatial and Pixel Attacks
Haichao Zhang
Jianyu Wang
203
4
0
24 Jul 2019
Understanding Adversarial Attacks on Deep Learning Based Medical Image Analysis Systems
Pattern Recognition (Pattern Recognit.), 2019
Jiabo He
Yuhao Niu
Lin Gu
Yisen Wang
Yitian Zhao
James Bailey
Feng Lu
MedIm
AAML
312
515
0
24 Jul 2019
Towards Logical Specification of Statistical Machine Learning
IEEE International Conference on Software Engineering and Formal Methods (SEFM), 2019
Yusuke Kawamoto
CML
190
7
0
24 Jul 2019
Towards Adversarially Robust Object Detection
IEEE International Conference on Computer Vision (ICCV), 2019
Haichao Zhang
Jianyu Wang
AAML
ObjD
218
149
0
24 Jul 2019
Enhancing Adversarial Example Transferability with an Intermediate Level Attack
IEEE International Conference on Computer Vision (ICCV), 2019
Qian Huang
Isay Katsman
Horace He
Zeqi Gu
Serge J. Belongie
Ser-Nam Lim
SILM
AAML
364
278
0
23 Jul 2019
Understanding Adversarial Robustness Through Loss Landscape Geometries
Vinay Uday Prabhu
Dian Ang Yap
Joyce Xu
John Whaley
AAML
120
19
0
22 Jul 2019
Structure-Invariant Testing for Machine Translation
International Conference on Software Engineering (ICSE), 2019
Pinjia He
Clara Meister
Z. Su
251
115
0
19 Jul 2019
ART: Abstraction Refinement-Guided Training for Provably Correct Neural Networks
Formal Methods in Computer-Aided Design (FMCAD), 2019
Xuankang Lin
He Zhu
R. Samanta
Suresh Jagannathan
AAML
213
31
0
17 Jul 2019
Adversarial Security Attacks and Perturbations on Machine Learning and Deep Learning Methods
Arif Siddiqi
AAML
198
14
0
17 Jul 2019
Natural Adversarial Examples
Computer Vision and Pattern Recognition (CVPR), 2019
Dan Hendrycks
Kevin Zhao
Steven Basart
Jacob Steinhardt
Basel Alomair
OODD
930
1,746
0
16 Jul 2019
Latent Adversarial Defence with Boundary-guided Generation
Xiaowei Zhou
Ivor W. Tsang
Jie Yin
AAML
135
5
0
16 Jul 2019
Adversarial Sensor Attack on LiDAR-based Perception in Autonomous Driving
Conference on Computer and Communications Security (CCS), 2019
Yulong Cao
Chaowei Xiao
Benjamin Cyr
Yimeng Zhou
Wonseok Park
Sara Rampazzi
Qi Alfred Chen
Kevin Fu
Z. Morley Mao
AAML
225
601
0
16 Jul 2019
Graph Interpolating Activation Improves Both Natural and Robust Accuracies in Data-Efficient Deep Learning
European journal of applied mathematics (EJAM), 2019
Bao Wang
Stanley J. Osher
AAML
AI4CE
125
11
0
16 Jul 2019
Recovery Guarantees for Compressible Signals with Adversarial Noise
J. Dhaliwal
Kyle Hambrook
AAML
160
2
0
15 Jul 2019
A Novel User Representation Paradigm for Making Personalized Candidate Retrieval
Zheng Liu
Yu Xing
Jianxun Lian
Defu Lian
Ziyao Li
Xing Xie
125
3
0
15 Jul 2019
Learning Functions over Sets via Permutation Adversarial Networks
Chirag Pabbaraju
Prateek Jain
160
8
0
12 Jul 2019
Stateful Detection of Black-Box Adversarial Attacks
Steven Chen
Nicholas Carlini
D. Wagner
AAML
MLAU
193
135
0
12 Jul 2019
Fast and Provable ADMM for Learning with Generative Priors
Fabian Latorre Gómez
Armin Eftekhari
Volkan Cevher
GAN
194
47
0
07 Jul 2019
Towards Robust, Locally Linear Deep Networks
International Conference on Learning Representations (ICLR), 2019
Guang-He Lee
David Alvarez-Melis
Tommi Jaakkola
ODL
207
48
0
07 Jul 2019
Affine Disentangled GAN for Interpretable and Robust AV Perception
Letao Liu
Martin Saerbeck
Justin Dauwels
130
1
0
06 Jul 2019
Detecting and Diagnosing Adversarial Images with Class-Conditional Capsule Reconstructions
International Conference on Learning Representations (ICLR), 2019
Yao Qin
Nicholas Frosst
S. Sabour
Colin Raffel
G. Cottrell
Geoffrey E. Hinton
GAN
AAML
208
75
0
05 Jul 2019
Adversarial Robustness through Local Linearization
Chongli Qin
James Martens
Sven Gowal
Dilip Krishnan
Krishnamurthy Dvijotham
Alhussein Fawzi
Soham De
Robert Stanforth
Pushmeet Kohli
AAML
312
323
0
04 Jul 2019
Variance Reduction for Matrix Games
Y. Carmon
Yujia Jin
Aaron Sidford
Kevin Tian
270
74
0
03 Jul 2019
Minimally distorted Adversarial Examples with a Fast Adaptive Boundary Attack
International Conference on Machine Learning (ICML), 2019
Francesco Croce
Matthias Hein
AAML
548
562
0
03 Jul 2019
Efficient Algorithms for Smooth Minimax Optimization
Neural Information Processing Systems (NeurIPS), 2019
K. K. Thekumparampil
Prateek Jain
Praneeth Netrapalli
Sewoong Oh
326
198
0
02 Jul 2019
Treant: Training Evasion-Aware Decision Trees
Data mining and knowledge discovery (DMKD), 2019
Stefano Calzavara
Claudio Lucchese
Gabriele Tolomei
S. Abebe
S. Orlando
AAML
131
43
0
02 Jul 2019
Diminishing the Effect of Adversarial Perturbations via Refining Feature Representation
Nader Asadi
Amirm. Sarfi
Mehrdad Hosseinzadeh
Sahba Tahsini
M. Eftekhari
AAML
131
2
0
01 Jul 2019
Accurate, reliable and fast robustness evaluation
Neural Information Processing Systems (NeurIPS), 2019
Wieland Brendel
Jonas Rauber
Matthias Kümmerer
Ivan Ustyuzhaninov
Matthias Bethge
AAML
OOD
300
116
0
01 Jul 2019
Comment on "Adv-BNN: Improved Adversarial Defense through Robust Bayesian Neural Network"
Roland S. Zimmermann
AAML
78
27
0
01 Jul 2019
Fooling a Real Car with Adversarial Traffic Signs
N. Morgulis
Alexander Kreines
Shachar Mendelowitz
Yuval Weisglass
AAML
187
97
0
30 Jun 2019
Training individually fair ML models with Sensitive Subspace Robustness
International Conference on Learning Representations (ICLR), 2019
Mikhail Yurochkin
Amanda Bower
Yuekai Sun
FaML
OOD
242
122
0
28 Jun 2019
Using Self-Supervised Learning Can Improve Model Robustness and Uncertainty
Neural Information Processing Systems (NeurIPS), 2019
Dan Hendrycks
Mantas Mazeika
Saurav Kadavath
Basel Alomair
OOD
SSL
288
1,025
0
28 Jun 2019
Using Intuition from Empirical Properties to Simplify Adversarial Training Defense
Guanxiong Liu
Issa M. Khalil
Abdallah Khreishah
AAML
114
2
0
27 Jun 2019
Evolving Robust Neural Architectures to Defend from Adversarial Attacks
Shashank Kotyan
Danilo Vasconcellos Vargas
OOD
AAML
147
37
0
27 Jun 2019
Invariance-inducing regularization using worst-case transformations suffices to boost accuracy and spatial robustness
Neural Information Processing Systems (NeurIPS), 2019
Fanny Yang
Zuowen Wang
C. Heinze-Deml
282
46
0
26 Jun 2019
Defending Adversarial Attacks by Correcting logits
Yifeng Li
Lingxi Xie
Ya Zhang
Rui Zhang
Yanfeng Wang
Qi Tian
AAML
118
5
0
26 Jun 2019
Prediction Poisoning: Towards Defenses Against DNN Model Stealing Attacks
International Conference on Learning Representations (ICLR), 2019
Tribhuvanesh Orekondy
Bernt Schiele
Mario Fritz
AAML
227
185
0
26 Jun 2019
Are Adversarial Perturbations a Showstopper for ML-Based CAD? A Case Study on CNN-Based Lithographic Hotspot Detection
Kang Liu
Haoyu Yang
Yuzhe Ma
Benjamin Tan
Bei Yu
Evangeline F. Y. Young
Ramesh Karri
S. Garg
AAML
107
10
0
25 Jun 2019
Defending Against Adversarial Examples with K-Nearest Neighbor
Chawin Sitawarin
David Wagner
AAML
190
29
0
23 Jun 2019
A Fourier Perspective on Model Robustness in Computer Vision
Neural Information Processing Systems (NeurIPS), 2019
Dong Yin
Raphael Gontijo-Lopes
Jonathon Shlens
E. D. Cubuk
Justin Gilmer
OOD
405
570
0
21 Jun 2019
On Physical Adversarial Patches for Object Detection
Mark Lee
Zico Kolter
AAML
182
193
0
20 Jun 2019
Improving the robustness of ImageNet classifiers using elements of human visual cognition
International Conference on Learning Representations (ICLR), 2019
A. Orhan
Brenden M. Lake
VLM
143
5
0
20 Jun 2019
Cloud-based Image Classification Service Is Not Robust To Simple Transformations: A Forgotten Battlefield
Dou Goodman
Tao Wei
AAML
156
6
0
19 Jun 2019
A unified view on differential privacy and robustness to adversarial examples
Rafael Pinot
Florian Yger
Cédric Gouy-Pailler
Jamal Atif
AAML
147
19
0
19 Jun 2019
SemanticAdv: Generating Adversarial Examples via Attribute-conditional Image Editing
European Conference on Computer Vision (ECCV), 2019
Haonan Qiu
Chaowei Xiao
Lei Yang
Xinchen Yan
Honglak Lee
Yue Liu
AAML
339
197
0
19 Jun 2019
Global Adversarial Attacks for Assessing Deep Learning Robustness
Hanbin Hu
Mitt Shah
Jianhua Z. Huang
Peng Li
AAML
175
4
0
19 Jun 2019
Convergence of Adversarial Training in Overparametrized Neural Networks
Neural Information Processing Systems (NeurIPS), 2019
Ruiqi Gao
Tianle Cai
Haochuan Li
Liwei Wang
Cho-Jui Hsieh
Jason D. Lee
AAML
308
114
0
19 Jun 2019
The Attack Generator: A Systematic Approach Towards Constructing Adversarial Attacks
F. Assion
Peter Schlicht
Florens Greßner
W. Günther
Fabian Hüger
Nico M. Schmidt
Umair Rasheed
AAML
147
16
0
17 Jun 2019
Improving Black-box Adversarial Attacks with a Transfer-based Prior
Neural Information Processing Systems (NeurIPS), 2019
Shuyu Cheng
Yinpeng Dong
Tianyu Pang
Hang Su
Jun Zhu
AAML
212
295
0
17 Jun 2019
Previous
1
2
3
...
129
130
131
...
140
141
142
Next