ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1710.10547
  4. Cited By
Interpretation of Neural Networks is Fragile
v1v2 (latest)

Interpretation of Neural Networks is Fragile

AAAI Conference on Artificial Intelligence (AAAI), 2017
29 October 2017
Amirata Ghorbani
Abubakar Abid
James Zou
    FAttAAML
ArXiv (abs)PDFHTML

Papers citing "Interpretation of Neural Networks is Fragile"

50 / 489 papers shown
CRAFT: Concept Recursive Activation FacTorization for Explainability
CRAFT: Concept Recursive Activation FacTorization for ExplainabilityComputer Vision and Pattern Recognition (CVPR), 2022
Thomas Fel
Agustin Picard
Louis Bethune
Thibaut Boissin
David Vigouroux
Julien Colin
Rémi Cadène
Thomas Serre
346
165
0
17 Nov 2022
Explainer Divergence Scores (EDS): Some Post-Hoc Explanations May be
  Effective for Detecting Unknown Spurious Correlations
Explainer Divergence Scores (EDS): Some Post-Hoc Explanations May be Effective for Detecting Unknown Spurious Correlations
Shea Cardozo
Gabriel Islas Montero
Dmitry Kazhdan
B. Dimanov
Maleakhi A. Wijaya
M. Jamnik
Pietro Lio
AAML
251
0
0
14 Nov 2022
What Makes a Good Explanation?: A Harmonized View of Properties of
  Explanations
What Makes a Good Explanation?: A Harmonized View of Properties of Explanations
Zixi Chen
Varshini Subhash
Marton Havasi
Weiwei Pan
Finale Doshi-Velez
XAIFAtt
405
25
0
10 Nov 2022
On the Robustness of Explanations of Deep Neural Network Models: A
  Survey
On the Robustness of Explanations of Deep Neural Network Models: A Survey
Amlan Jyoti
Karthik Balaji Ganesh
Manoj Gayala
Nandita Lakshmi Tunuguntla
Sandesh Kamath
V. Balasubramanian
XAIFAttAAML
262
9
0
09 Nov 2022
Calibration Meets Explanation: A Simple and Effective Approach for Model
  Confidence Estimates
Calibration Meets Explanation: A Simple and Effective Approach for Model Confidence EstimatesConference on Empirical Methods in Natural Language Processing (EMNLP), 2022
Dongfang Li
Baotian Hu
Qingcai Chen
135
10
0
06 Nov 2022
SoK: Modeling Explainability in Security Analytics for Interpretability,
  Trustworthiness, and Usability
SoK: Modeling Explainability in Security Analytics for Interpretability, Trustworthiness, and UsabilityARES (ARES), 2022
Dipkamal Bhusal
Rosalyn Shin
Ajay Ashok Shewale
M. K. Veerabhadran
Michael Clifford
Sara Rampazzi
Nidhi Rastogi
FAttAAML
286
15
0
31 Oct 2022
BOREx: Bayesian-Optimization--Based Refinement of Saliency Map for
  Image- and Video-Classification Models
BOREx: Bayesian-Optimization--Based Refinement of Saliency Map for Image- and Video-Classification ModelsAsian Conference on Computer Vision (ACCV), 2022
Atsushi Kikuchi
Kotaro Uchida
Masaki Waga
Kohei Suenaga
FAtt
214
1
0
31 Oct 2022
Safety Verification for Neural Networks Based on Set-boundary Analysis
Safety Verification for Neural Networks Based on Set-boundary AnalysisTheoretical Aspects of Software Engineering (TASE), 2022
Zhen Liang
Dejin Ren
Wanwei Liu
Ji Wang
Wenjing Yang
Bai Xue
AAML
221
7
0
09 Oct 2022
Boundary-Aware Uncertainty for Feature Attribution Explainers
Boundary-Aware Uncertainty for Feature Attribution ExplainersInternational Conference on Artificial Intelligence and Statistics (AISTATS), 2022
Davin Hill
A. Masoomi
Max Torop
S. Ghimire
Jennifer Dy
FAtt
511
8
0
05 Oct 2022
Ensembling improves stability and power of feature selection for deep
  learning models
Ensembling improves stability and power of feature selection for deep learning models
P. Gyawali
Xiaoxia Liu
James Zou
Zihuai He
OODFedML
260
10
0
02 Oct 2022
Towards Human-Compatible XAI: Explaining Data Differentials with Concept
  Induction over Background Knowledge
Towards Human-Compatible XAI: Explaining Data Differentials with Concept Induction over Background KnowledgeJournal of Web Semantics (Web Semantics), 2022
Cara L. Widmer
Md Kamruzzaman Sarker
Srikanth Nadella
Joshua L. Fiechter
I. Juvina
B. Minnery
Pascal Hitzler
Joshua Schwartz
M. Raymer
227
8
0
27 Sep 2022
Towards Faithful Model Explanation in NLP: A Survey
Towards Faithful Model Explanation in NLP: A SurveyComputational Linguistics (CL), 2022
Qing Lyu
Marianna Apidianaki
Chris Callison-Burch
XAI
524
166
0
22 Sep 2022
Concept Embedding Models: Beyond the Accuracy-Explainability Trade-Off
Concept Embedding Models: Beyond the Accuracy-Explainability Trade-OffNeural Information Processing Systems (NeurIPS), 2022
M. Zarlenga
Pietro Barbiero
Gabriele Ciravegna
G. Marra
Francesco Giannini
...
F. Precioso
S. Melacci
Adrian Weller
Pietro Lio
M. Jamnik
290
63
0
19 Sep 2022
EMaP: Explainable AI with Manifold-based Perturbations
EMaP: Explainable AI with Manifold-based Perturbations
Minh Nhat Vu
Huy Mai
My T. Thai
AAML
159
2
0
18 Sep 2022
Error Controlled Feature Selection for Ultrahigh Dimensional and Highly
  Correlated Feature Space Using Deep Learning
Error Controlled Feature Selection for Ultrahigh Dimensional and Highly Correlated Feature Space Using Deep LearningStatistical analysis and data mining (SADM), 2022
Arkaprabha Ganguli
D. Todem
T. Maiti
OOD
397
0
0
15 Sep 2022
If Influence Functions are the Answer, Then What is the Question?
If Influence Functions are the Answer, Then What is the Question?Neural Information Processing Systems (NeurIPS), 2022
Juhan Bae
Nathan Ng
Alston Lo
Marzyeh Ghassemi
Roger C. Grosse
TDI
332
137
0
12 Sep 2022
Foundations and Trends in Multimodal Machine Learning: Principles,
  Challenges, and Open Questions
Foundations and Trends in Multimodal Machine Learning: Principles, Challenges, and Open QuestionsACM Computing Surveys (ACM CSUR), 2022
Paul Pu Liang
Amir Zadeh
Louis-Philippe Morency
310
164
0
07 Sep 2022
"Is your explanation stable?": A Robustness Evaluation Framework for
  Feature Attribution
"Is your explanation stable?": A Robustness Evaluation Framework for Feature AttributionConference on Computer and Communications Security (CCS), 2022
Yuyou Gan
Yuhao Mao
Xuhong Zhang
S. Ji
Yuwen Pu
Meng Han
Jianwei Yin
Ting Wang
FAttAAML
156
16
0
05 Sep 2022
Generating detailed saliency maps using model-agnostic methods
Generating detailed saliency maps using model-agnostic methods
Maciej Sakowicz
FAtt
154
0
0
04 Sep 2022
Concept-Based Techniques for "Musicologist-friendly" Explanations in a
  Deep Music Classifier
Concept-Based Techniques for "Musicologist-friendly" Explanations in a Deep Music ClassifierInternational Society for Music Information Retrieval Conference (ISMIR), 2022
Francesco Foscarin
Katharina Hoedt
Verena Praher
A. Flexer
Gerhard Widmer
221
15
0
26 Aug 2022
SoK: Explainable Machine Learning for Computer Security Applications
SoK: Explainable Machine Learning for Computer Security ApplicationsEuropean Symposium on Security and Privacy (Euro S&P), 2022
A. Nadeem
D. Vos
Clinton Cao
Luca Pajola
Simon Dieck
Robert Baumgartner
S. Verwer
362
63
0
22 Aug 2022
SAFARI: Versatile and Efficient Evaluations for Robustness of
  Interpretability
SAFARI: Versatile and Efficient Evaluations for Robustness of InterpretabilityIEEE International Conference on Computer Vision (ICCV), 2022
Wei Huang
Xingyu Zhao
Gao Jin
Xiaowei Huang
AAML
353
37
0
19 Aug 2022
Comparing Baseline Shapley and Integrated Gradients for Local
  Explanation: Some Additional Insights
Comparing Baseline Shapley and Integrated Gradients for Local Explanation: Some Additional Insights
Tianshu Feng
Zhipu Zhou
Tarun Joshi
V. Nair
FAtt
214
6
0
12 Aug 2022
Encoding Concepts in Graph Neural Networks
Encoding Concepts in Graph Neural Networks
Lucie Charlotte Magister
Pietro Barbiero
Dmitry Kazhdan
F. Siciliano
Gabriele Ciravegna
Fabrizio Silvestri
M. Jamnik
Pietro Lio
249
22
0
27 Jul 2022
Equivariant and Invariant Grounding for Video Question Answering
Equivariant and Invariant Grounding for Video Question AnsweringACM Multimedia (ACM MM), 2022
Yicong Li
Xiang Wang
Junbin Xiao
Tat-Seng Chua
213
34
0
26 Jul 2022
Calibrate to Interpret
Calibrate to Interpret
Gregory Scafarto
N. Posocco
Antoine Bonnefoy
FaML
110
5
0
07 Jul 2022
Analyzing Explainer Robustness via Probabilistic Lipschitzness of
  Prediction Functions
Analyzing Explainer Robustness via Probabilistic Lipschitzness of Prediction FunctionsInternational Conference on Artificial Intelligence and Statistics (AISTATS), 2022
Zulqarnain Khan
Davin Hill
A. Masoomi
Joshua Bone
Jennifer Dy
AAML
380
7
0
24 Jun 2022
Robustness of Explanation Methods for NLP Models
Robustness of Explanation Methods for NLP Models
Shriya Atmakuri
Tejas Chheda
Dinesh Kandula
Nishant Yadav
Taesung Lee
Hessel Tuinhof
FAttAAML
156
4
0
24 Jun 2022
OpenXAI: Towards a Transparent Evaluation of Model Explanations
OpenXAI: Towards a Transparent Evaluation of Model Explanations
Chirag Agarwal
Dan Ley
Satyapriya Krishna
Eshika Saxena
Martin Pawelczyk
Nari Johnson
Isha Puri
Marinka Zitnik
Himabindu Lakkaraju
XAI
507
169
0
22 Jun 2022
Algorithmic Fairness and Vertical Equity: Income Fairness with IRS Tax
  Audit Models
Algorithmic Fairness and Vertical Equity: Income Fairness with IRS Tax Audit ModelsConference on Fairness, Accountability and Transparency (FAccT), 2022
Emily Black
Hadi Elzayn
Alexandra Chouldechova
Jacob Goldin
Mark A. Lemley
MLAU
107
32
0
20 Jun 2022
Efficiently Training Low-Curvature Neural Networks
Efficiently Training Low-Curvature Neural NetworksNeural Information Processing Systems (NeurIPS), 2022
Suraj Srinivas
Kyle Matoba
Himabindu Lakkaraju
François Fleuret
AAML
214
17
0
14 Jun 2022
On the explainable properties of 1-Lipschitz Neural Networks: An Optimal
  Transport Perspective
On the explainable properties of 1-Lipschitz Neural Networks: An Optimal Transport PerspectiveNeural Information Processing Systems (NeurIPS), 2022
M. Serrurier
Franck Mamalet
Thomas Fel
Louis Bethune
Thibaut Boissin
AAMLFAtt
359
8
0
14 Jun 2022
Making Sense of Dependence: Efficient Black-box Explanations Using
  Dependence Measure
Making Sense of Dependence: Efficient Black-box Explanations Using Dependence MeasureNeural Information Processing Systems (NeurIPS), 2022
Paul Novello
Thomas Fel
David Vigouroux
FAtt
336
40
0
13 Jun 2022
Xplique: A Deep Learning Explainability Toolbox
Xplique: A Deep Learning Explainability Toolbox
Thomas Fel
Lucas Hervier
David Vigouroux
Antonin Poché
Justin Plakoo
...
Agustin Picard
C. Nicodeme
Laurent Gardes
G. Flandin
Thomas Serre
204
43
0
09 Jun 2022
Do We Need Another Explainable AI Method? Toward Unifying Post-hoc XAI
  Evaluation Methods into an Interactive and Multi-dimensional Benchmark
Do We Need Another Explainable AI Method? Toward Unifying Post-hoc XAI Evaluation Methods into an Interactive and Multi-dimensional Benchmark
Mohamed Karim Belaid
Eyke Hüllermeier
Maximilian Rabus
Ralf Krestel
ELM
169
0
0
08 Jun 2022
Fooling Explanations in Text Classifiers
Fooling Explanations in Text ClassifiersInternational Conference on Learning Representations (ICLR), 2022
Adam Ivankay
Ivan Girardi
Chiara Marchiori
P. Frossard
AAML
200
21
0
07 Jun 2022
Saliency Cards: A Framework to Characterize and Compare Saliency Methods
Saliency Cards: A Framework to Characterize and Compare Saliency MethodsConference on Fairness, Accountability and Transparency (FAccT), 2022
Angie Boggust
Harini Suresh
Hendrik Strobelt
John Guttag
Arvindmani Satyanarayan
FAttXAI
207
15
0
07 Jun 2022
A Human-Centric Take on Model Monitoring
A Human-Centric Take on Model MonitoringAAAI Conference on Human Computation & Crowdsourcing (HCOMP), 2022
Murtuza N. Shergadwala
Himabindu Lakkaraju
K. Kenthapadi
207
16
0
06 Jun 2022
Use-Case-Grounded Simulations for Explanation Evaluation
Use-Case-Grounded Simulations for Explanation EvaluationNeural Information Processing Systems (NeurIPS), 2022
Valerie Chen
Nari Johnson
Nicholay Topin
Gregory Plumb
Ameet Talwalkar
FAttELM
206
24
0
05 Jun 2022
Interpretable Mixture of Experts
Interpretable Mixture of Experts
Aya Abdelsalam Ismail
Sercan O. Arik
Chang Jo Kim
Ankur Taly
Soheil Feizi
Tomas Pfister
MoE
182
14
0
05 Jun 2022
Which Explanation Should I Choose? A Function Approximation Perspective
  to Characterizing Post Hoc Explanations
Which Explanation Should I Choose? A Function Approximation Perspective to Characterizing Post Hoc ExplanationsNeural Information Processing Systems (NeurIPS), 2022
Tessa Han
Suraj Srinivas
Himabindu Lakkaraju
FAtt
349
107
0
02 Jun 2022
Attribution-based Explanations that Provide Recourse Cannot be Robust
Attribution-based Explanations that Provide Recourse Cannot be RobustJournal of machine learning research (JMLR), 2022
H. Fokkema
R. D. Heide
T. Erven
FAtt
362
22
0
31 May 2022
Scalable Interpretability via Polynomials
Scalable Interpretability via PolynomialsNeural Information Processing Systems (NeurIPS), 2022
Abhimanyu Dubey
Filip Radenovic
D. Mahajan
172
36
0
27 May 2022
Towards a Theory of Faithfulness: Faithful Explanations of
  Differentiable Classifiers over Continuous Data
Towards a Theory of Faithfulness: Faithful Explanations of Differentiable Classifiers over Continuous Data
Nico Potyka
Xiang Yin
Francesca Toni
FAtt
181
4
0
19 May 2022
The Solvability of Interpretability Evaluation Metrics
The Solvability of Interpretability Evaluation MetricsFindings (Findings), 2022
Yilun Zhou
J. Shah
251
9
0
18 May 2022
Sparse Visual Counterfactual Explanations in Image Space
Sparse Visual Counterfactual Explanations in Image SpaceGerman Conference on Pattern Recognition (GCPR), 2022
Valentyn Boreiko
Maximilian Augustin
Francesco Croce
Philipp Berens
Matthias Hein
BDLCML
351
32
0
16 May 2022
Exploiting the Relationship Between Kendall's Rank Correlation and
  Cosine Similarity for Attribution Protection
Exploiting the Relationship Between Kendall's Rank Correlation and Cosine Similarity for Attribution ProtectionNeural Information Processing Systems (NeurIPS), 2022
Fan Wang
A. Kong
313
11
0
15 May 2022
Fairness via Explanation Quality: Evaluating Disparities in the Quality
  of Post hoc Explanations
Fairness via Explanation Quality: Evaluating Disparities in the Quality of Post hoc ExplanationsAAAI/ACM Conference on AI, Ethics, and Society (AIES), 2022
Jessica Dai
Sohini Upadhyay
Ulrich Aïvodji
Stephen H. Bach
Himabindu Lakkaraju
249
63
0
15 May 2022
Explainable Deep Learning Methods in Medical Image Classification: A
  Survey
Explainable Deep Learning Methods in Medical Image Classification: A SurveyACM Computing Surveys (ACM CSUR), 2022
Cristiano Patrício
João C. Neves
Luís F. Teixeira
XAI
263
101
0
10 May 2022
Should attention be all we need? The epistemic and ethical implications
  of unification in machine learning
Should attention be all we need? The epistemic and ethical implications of unification in machine learningConference on Fairness, Accountability and Transparency (FAccT), 2022
N. Fishman
Leif Hancox-Li
180
11
0
09 May 2022
Previous
123456...8910
Next