Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
1710.10547
Cited By
v1
v2 (latest)
Interpretation of Neural Networks is Fragile
AAAI Conference on Artificial Intelligence (AAAI), 2017
29 October 2017
Amirata Ghorbani
Abubakar Abid
James Zou
FAtt
AAML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Interpretation of Neural Networks is Fragile"
50 / 489 papers shown
The Road to Explainability is Paved with Bias: Measuring the Fairness of Explanations
Conference on Fairness, Accountability and Transparency (FAccT), 2022
Aparna Balagopalan
Haoran Zhang
Kimia Hamidieh
Thomas Hartvigsen
Frank Rudzicz
Marzyeh Ghassemi
276
91
0
06 May 2022
ExSum: From Local Explanations to Model Understanding
North American Chapter of the Association for Computational Linguistics (NAACL), 2022
Yilun Zhou
Marco Tulio Ribeiro
J. Shah
FAtt
LRM
211
26
0
30 Apr 2022
Poly-CAM: High resolution class activation map for convolutional neural networks
Machine Vision and Applications (MVA), 2022
A. Englebert
O. Cornu
Christophe De Vleeschouwer
208
22
0
28 Apr 2022
It Takes Two Flints to Make a Fire: Multitask Learning of Neural Relation and Explanation Classifiers
International Conference on Computational Logic (ICCL), 2022
Zheng Tang
Mihai Surdeanu
439
9
0
25 Apr 2022
Backdooring Explainable Machine Learning
Maximilian Noppel
Lukas Peter
Christian Wressnegger
AAML
201
5
0
20 Apr 2022
A Survey and Perspective on Artificial Intelligence for Security-Aware Electronic Design Automation
D. Koblah
R. Acharya
Daniel Capecci
Olivia P. Dizon-Paradis
Shahin Tajik
F. Ganji
D. Woodard
Domenic Forte
221
21
0
19 Apr 2022
Explaining Deep Convolutional Neural Networks via Latent Visual-Semantic Filter Attention
Computer Vision and Pattern Recognition (CVPR), 2022
Yu Yang
Seung Wook Kim
Jungseock Joo
FAtt
187
19
0
10 Apr 2022
Explainability in Process Outcome Prediction: Guidelines to Obtain Interpretable and Faithful Models
European Journal of Operational Research (EJOR), 2022
Alexander Stevens
Johannes De Smedt
XAI
FaML
523
22
0
30 Mar 2022
Interpretable Prediction of Pulmonary Hypertension in Newborns using Echocardiograms
German Conference on Pattern Recognition (GCPR), 2022
H. Ragnarsdóttir
Laura Manduchi
H. Michel
F. Laumer
S. Wellmann
Ece Ozkan
Julia-Franziska Vogt
174
3
0
24 Mar 2022
Adversarial Training for Improving Model Robustness? Look at Both Prediction and Interpretation
AAAI Conference on Artificial Intelligence (AAAI), 2022
Hanjie Chen
Yangfeng Ji
OOD
AAML
VLM
221
26
0
23 Mar 2022
Rethinking Stability for Attribution-based Explanations
Chirag Agarwal
Nari Johnson
Martin Pawelczyk
Satyapriya Krishna
Eshika Saxena
Marinka Zitnik
Himabindu Lakkaraju
FAtt
199
64
0
14 Mar 2022
Explaining Classifiers by Constructing Familiar Concepts
Machine-mediated learning (ML), 2022
Johannes Schneider
M. Vlachos
187
17
0
07 Mar 2022
Concept-based Explanations for Out-Of-Distribution Detectors
International Conference on Machine Learning (ICML), 2022
Jihye Choi
Jayaram Raghuram
Ryan Feng
Jiefeng Chen
S. Jha
Atul Prakash
OODD
201
17
0
04 Mar 2022
Evaluating Local Model-Agnostic Explanations of Learning to Rank Models with Decision Paths
Amir Hossein Akhavan Rahnama
Judith Butepage
XAI
FAtt
109
0
0
04 Mar 2022
Evaluating Feature Attribution Methods in the Image Domain
Machine-mediated learning (ML), 2022
Arne Gevaert
Axel-Jan Rousseau
Thijs Becker
D. Valkenborg
T. D. Bie
Yvan Saeys
FAtt
137
27
0
22 Feb 2022
Don't Lie to Me! Robust and Efficient Explainability with Verified Perturbation Analysis
Computer Vision and Pattern Recognition (CVPR), 2022
Thomas Fel
Mélanie Ducoffe
David Vigouroux
Rémi Cadène
Mikael Capelle
C. Nicodeme
Thomas Serre
AAML
243
47
0
15 Feb 2022
Rethinking Explainability as a Dialogue: A Practitioner's Perspective
Himabindu Lakkaraju
Dylan Slack
Yuxin Chen
Chenhao Tan
Sameer Singh
LRM
217
72
0
03 Feb 2022
The Disagreement Problem in Explainable Machine Learning: A Practitioner's Perspective
Satyapriya Krishna
Tessa Han
Alex Gu
Steven Wu
S. Jabbari
Himabindu Lakkaraju
744
240
0
03 Feb 2022
Debiased-CAM to mitigate systematic error with faithful visual explanations of machine learning
Wencan Zhang
Mariella Dimiccoli
Brian Y. Lim
FAtt
205
1
0
30 Jan 2022
Locally Invariant Explanations: Towards Stable and Unidirectional Explanations through Local Invariant Learning
Neural Information Processing Systems (NeurIPS), 2022
Amit Dhurandhar
Karthikeyan N. Ramamurthy
Kartik Ahuja
Vijay Arya
FAtt
228
6
0
28 Jan 2022
Diagnosing AI Explanation Methods with Folk Concepts of Behavior
Conference on Fairness, Accountability and Transparency (FAccT), 2022
Alon Jacovi
Jasmijn Bastings
Sebastian Gehrmann
Yoav Goldberg
Katja Filippova
443
21
0
27 Jan 2022
A Comprehensive Study of Image Classification Model Sensitivity to Foregrounds, Backgrounds, and Visual Attributes
Computer Vision and Pattern Recognition (CVPR), 2022
Mazda Moayeri
Phillip E. Pope
Yogesh Balaji
Soheil Feizi
VLM
214
64
0
26 Jan 2022
From Anecdotal Evidence to Quantitative Evaluation Methods: A Systematic Review on Evaluating Explainable AI
ACM Computing Surveys (ACM CSUR), 2022
Meike Nauta
Jan Trienes
Shreyasi Pathak
Elisa Nguyen
Michelle Peters
Yasmin Schmitt
Jorg Schlotterer
M. V. Keulen
C. Seifert
ELM
XAI
583
555
0
20 Jan 2022
Evaluation of Neural Networks Defenses and Attacks using NDCG and Reciprocal Rank Metrics
International Journal of Information Security (JIS), 2022
Haya Brama
L. Dery
Tal Grinshpoun
AAML
164
9
0
10 Jan 2022
Topological Representations of Local Explanations
Peter Xenopoulos
G. Chan
Harish Doraiswamy
L. G. Nonato
Brian Barr
Claudio Silva
FAtt
181
4
0
06 Jan 2022
GPEX, A Framework For Interpreting Artificial Neural Networks
Neural Information Processing Systems (NeurIPS), 2021
Amir Akbarnejad
G. Bigras
Nilanjan Ray
188
4
0
18 Dec 2021
Temporal-Spatial Causal Interpretations for Vision-Based Reinforcement Learning
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2021
Wenjie Shi
Gao Huang
Shiji Song
Cheng Wu
167
13
0
06 Dec 2021
Multi-objective Explanations of GNN Predictions
Yifei Liu
Chao Chen
Yazheng Liu
Xi Zhang
Sihong Xie
197
18
0
29 Nov 2021
Improving Deep Learning Interpretability by Saliency Guided Training
Neural Information Processing Systems (NeurIPS), 2021
Aya Abdelsalam Ismail
H. C. Bravo
Soheil Feizi
FAtt
225
102
0
29 Nov 2021
Selective Ensembles for Consistent Predictions
International Conference on Learning Representations (ICLR), 2021
Emily Black
Klas Leino
Matt Fredrikson
134
26
0
16 Nov 2021
Statistical Perspectives on Reliability of Artificial Intelligence Systems
Yili Hong
J. Lian
Li Xu
Jie Min
Yueyao Wang
Laura J. Freeman
Xinwei Deng
162
42
0
09 Nov 2021
Defense Against Explanation Manipulation
Ruixiang Tang
Ninghao Liu
Fan Yang
Na Zou
Helen Zhou
AAML
154
12
0
08 Nov 2021
Look at the Variance! Efficient Black-box Explanations with Sobol-based Sensitivity Analysis
Thomas Fel
Rémi Cadène
Mathieu Chalvidal
Matthieu Cord
David Vigouroux
Thomas Serre
MLAU
FAtt
AAML
263
81
0
07 Nov 2021
Callee: Recovering Call Graphs for Binaries with Transfer and Contrastive Learning
IEEE Symposium on Security and Privacy (IEEE S&P), 2021
Wenyu Zhu
Zhiyao Feng
Zihan Zhang
Jian-jun Chen
Zhijian Ou
Min Yang
Chao Zhang
AAML
220
10
0
02 Nov 2021
Transparency of Deep Neural Networks for Medical Image Analysis: A Review of Interpretability Methods
Zohaib Salahuddin
Henry C. Woodruff
A. Chatterjee
Philippe Lambin
227
398
0
01 Nov 2021
A Survey on the Robustness of Feature Importance and Counterfactual Explanations
Saumitra Mishra
Sanghamitra Dutta
Jason Long
Daniele Magazzeni
AAML
248
66
0
30 Oct 2021
On the explainability of hospitalization prediction on a large COVID-19 patient dataset
American Medical Informatics Association Annual Symposium (AMIA), 2021
Ivan Girardi
P. Vagenas
Dario Arcos-Díaz
Lydia Bessaï
Alexandra Büsser
...
R. Furlan
Mauro Gatti
Andrea Giovannini
Ellen Hoeven
Chiara Marchiori
FAtt
80
3
0
28 Oct 2021
Provably Robust Model-Centric Explanations for Critical Decision-Making
Cecilia G. Morales
Nick Gisolfi
R. Edman
J. K. Miller
A. Dubrawski
63
0
0
26 Oct 2021
Coalitional Bayesian Autoencoders -- Towards explainable unsupervised deep learning
Bang Xiang Yong
Alexandra Brintrup
145
11
0
19 Oct 2021
The Irrationality of Neural Rationale Models
Yiming Zheng
Serena Booth
J. Shah
Yilun Zhou
356
18
0
14 Oct 2021
Making Corgis Important for Honeycomb Classification: Adversarial Attacks on Concept-based Explainability Tools
Davis Brown
Henry Kvinge
AAML
208
11
0
14 Oct 2021
CloudPred: Predicting Patient Phenotypes From Single-cell RNA-seq
Bryan He
M. Thomson
Meena Subramaniam
Richard K. Perez
Chun Jimmie Ye
J. Zou
41
22
0
13 Oct 2021
Implicit Bias of Linear Equivariant Networks
International Conference on Machine Learning (ICML), 2021
Hannah Lawrence
Kristian Georgiev
A. Dienes
B. Kiani
AI4CE
216
18
0
12 Oct 2021
Consistent Counterfactuals for Deep Models
Emily Black
Zifan Wang
Matt Fredrikson
Anupam Datta
BDL
OffRL
OOD
157
55
0
06 Oct 2021
NEWRON: A New Generalization of the Artificial Neuron to Enhance the Interpretability of Neural Networks
F. Siciliano
Maria Sofia Bucarelli
Gabriele Tolomei
Fabrizio Silvestri
GNN
AI4CE
99
6
0
05 Oct 2021
AdjointBackMapV2: Precise Reconstruction of Arbitrary CNN Unit's Activation via Adjoint Operators
Qing Wan
Siu Wun Cheung
Yoonsuck Choe
183
0
0
04 Oct 2021
Trustworthy AI: From Principles to Practices
Yue Liu
Peng Qi
Bo Liu
Shuai Di
Jingen Liu
Jiquan Pei
Jinfeng Yi
Bowen Zhou
471
513
0
04 Oct 2021
Adversarial Regression with Doubly Non-negative Weighting Matrices
Tam Le
Truyen V. Nguyen
M. Yamada
Jose H. Blanchet
Viet Anh Nguyen
213
5
0
30 Sep 2021
Deep neural networks with controlled variable selection for the identification of putative causal genetic variants
P. H. Kassani
Fred Lu
Yann Le Guen
Zihuai He
242
15
0
29 Sep 2021
Discriminative Attribution from Counterfactuals
N. Eckstein
A. S. Bates
G. Jefferis
Jan Funke
FAtt
CML
95
2
0
28 Sep 2021
Previous
1
2
3
...
10
5
6
7
8
9
Next