Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
1711.00851
Cited By
v1
v2
v3 (latest)
Provable defenses against adversarial examples via the convex outer adversarial polytope
2 November 2017
Eric Wong
J. Zico Kolter
AAML
Re-assign community
ArXiv (abs)
PDF
HTML
Github (387★)
Papers citing
"Provable defenses against adversarial examples via the convex outer adversarial polytope"
50 / 957 papers shown
Title
CAQL: Continuous Action Q-Learning
International Conference on Learning Representations (ICLR), 2019
Moonkyung Ryu
Yinlam Chow
Ross Anderson
Christian Tjandraatmadja
Craig Boutilier
489
47
0
26 Sep 2019
Lower Bounds on Adversarial Robustness from Optimal Transport
Neural Information Processing Systems (NeurIPS), 2019
A. Bhagoji
Daniel Cullina
Prateek Mittal
OOD
OT
AAML
168
97
0
26 Sep 2019
Towards neural networks that provably know when they don't know
International Conference on Learning Representations (ICLR), 2019
Alexander Meinke
Matthias Hein
OODD
232
147
0
26 Sep 2019
Defending Against Physically Realizable Attacks on Image Classification
International Conference on Learning Representations (ICLR), 2019
Tong Wu
Liang Tong
Yevgeniy Vorobeychik
AAML
238
141
0
20 Sep 2019
Adversarial Vulnerability Bounds for Gaussian Process Classification
Machine-mediated learning (ML), 2019
M. Smith
Kathrin Grosse
Michael Backes
Mauricio A. Alvarez
AAML
103
9
0
19 Sep 2019
Adversarial Attacks and Defenses in Images, Graphs and Text: A Review
International Journal of Automation and Computing (IJAC), 2019
Han Xu
Yao Ma
Haochen Liu
Debayan Deb
Hui Liu
Shucheng Zhou
Anil K. Jain
AAML
291
725
0
17 Sep 2019
Neural Belief Reasoner
International Joint Conference on Artificial Intelligence (IJCAI), 2019
Haifeng Qian
NAI
BDL
124
1
0
10 Sep 2019
Adversarial Robustness Against the Union of Multiple Perturbation Models
International Conference on Machine Learning (ICML), 2019
Pratyush Maini
Eric Wong
J. Zico Kolter
OOD
AAML
233
163
0
09 Sep 2019
Achieving Verified Robustness to Symbol Substitutions via Interval Bound Propagation
Conference on Empirical Methods in Natural Language Processing (EMNLP), 2019
Po-Sen Huang
Robert Stanforth
Johannes Welbl
Chris Dyer
Dani Yogatama
Sven Gowal
Krishnamurthy Dvijotham
Pushmeet Kohli
AAML
208
173
0
03 Sep 2019
Certified Robustness to Adversarial Word Substitutions
Conference on Empirical Methods in Natural Language Processing (EMNLP), 2019
Robin Jia
Aditi Raghunathan
Kerem Göksel
Abigail Z. Jacobs
AAML
476
320
0
03 Sep 2019
Deep Learning Theory Review: An Optimal Control and Dynamical Systems Perspective
Guan-Horng Liu
Evangelos A. Theodorou
AI4CE
266
74
0
28 Aug 2019
Verification of Neural Network Control Policy Under Persistent Adversarial Perturbation
Yuh-Shyang Wang
Tsui-Wei Weng
Luca Daniel
AAML
109
17
0
18 Aug 2019
Implicit Deep Learning
SIAM Journal on Mathematics of Data Science (SIMODS), 2019
L. Ghaoui
Fangda Gu
Bertrand Travacca
Armin Askari
Alicia Y. Tsai
AI4CE
331
198
0
17 Aug 2019
Adversarial shape perturbations on 3D point clouds
Daniel Liu
Ronald Yu
Hao Su
3DPC
204
12
0
16 Aug 2019
A Survey of Recent Scalability Improvements for Semidefinite Programming with Applications in Machine Learning, Control, and Robotics
Anirudha Majumdar
G. Hall
Amir Ali Ahmadi
226
110
0
14 Aug 2019
Adversarial Neural Pruning with Latent Vulnerability Suppression
Divyam Madaan
Jinwoo Shin
Sung Ju Hwang
AAML
203
3
0
12 Aug 2019
Refactoring Neural Networks for Verification
David Shriver
Dong Xu
Sebastian G. Elbaum
Matthew B. Dwyer
110
8
0
06 Aug 2019
Understanding Adversarial Robustness: The Trade-off between Minimum and Average Margin
Kaiwen Wu
Yaoliang Yu
AAML
108
9
0
26 Jul 2019
Connecting Lyapunov Control Theory to Adversarial Attacks
Arash Rahnama
A. Nguyen
Edward Raff
AAML
101
6
0
17 Jul 2019
ART: Abstraction Refinement-Guided Training for Provably Correct Neural Networks
Formal Methods in Computer-Aided Design (FMCAD), 2019
Xuankang Lin
He Zhu
R. Samanta
Suresh Jagannathan
AAML
190
29
0
17 Jul 2019
Recovery Guarantees for Compressible Signals with Adversarial Noise
J. Dhaliwal
Kyle Hambrook
AAML
156
2
0
15 Jul 2019
Towards Robust, Locally Linear Deep Networks
International Conference on Learning Representations (ICLR), 2019
Guang-He Lee
David Alvarez-Melis
Tommi Jaakkola
ODL
186
48
0
07 Jul 2019
Accurate, reliable and fast robustness evaluation
Neural Information Processing Systems (NeurIPS), 2019
Wieland Brendel
Jonas Rauber
Matthias Kümmerer
Ivan Ustyuzhaninov
Matthias Bethge
AAML
OOD
281
116
0
01 Jul 2019
Certifiable Robustness and Robust Training for Graph Convolutional Networks
Knowledge Discovery and Data Mining (KDD), 2019
Daniel Zügner
Stephan Günnemann
OffRL
140
174
0
28 Jun 2019
Invariance-inducing regularization using worst-case transformations suffices to boost accuracy and spatial robustness
Neural Information Processing Systems (NeurIPS), 2019
Fanny Yang
Zuowen Wang
C. Heinze-Deml
261
46
0
26 Jun 2019
Quantitative Verification of Neural Networks And its Security Applications
Conference on Computer and Communications Security (CCS), 2019
Teodora Baluta
Shiqi Shen
Shweta Shinde
Kuldeep S. Meel
P. Saxena
AAML
196
113
0
25 Jun 2019
Convergence of Adversarial Training in Overparametrized Neural Networks
Neural Information Processing Systems (NeurIPS), 2019
Ruiqi Gao
Tianle Cai
Haochuan Li
Liwei Wang
Cho-Jui Hsieh
Jason D. Lee
AAML
260
113
0
19 Jun 2019
The Attack Generator: A Systematic Approach Towards Constructing Adversarial Attacks
F. Assion
Peter Schlicht
Florens Greßner
W. Günther
Fabian Hüger
Nico M. Schmidt
Umair Rasheed
AAML
132
16
0
17 Jun 2019
Interpolated Adversarial Training: Achieving Robust Neural Networks without Sacrificing Too Much Accuracy
Alex Lamb
Vikas Verma
Kenji Kawaguchi
Alexander Matyasko
Savya Khosla
Arno Solin
Yoshua Bengio
AAML
401
106
0
16 Jun 2019
Towards Stable and Efficient Training of Verifiably Robust Neural Networks
International Conference on Learning Representations (ICLR), 2019
Huan Zhang
Hongge Chen
Chaowei Xiao
Sven Gowal
Robert Stanforth
Yue Liu
Duane S. Boning
Cho-Jui Hsieh
AAML
316
371
0
14 Jun 2019
Towards Compact and Robust Deep Neural Networks
Vikash Sehwag
Shiqi Wang
Prateek Mittal
Suman Jana
AAML
129
41
0
14 Jun 2019
Tight Certificates of Adversarial Robustness for Randomly Smoothed Classifiers
Neural Information Processing Systems (NeurIPS), 2019
Guang-He Lee
Yang Yuan
Shiyu Chang
Tommi Jaakkola
AAML
200
134
0
12 Jun 2019
Efficient and Accurate Estimation of Lipschitz Constants for Deep Neural Networks
Neural Information Processing Systems (NeurIPS), 2019
Mahyar Fazlyab
Avi Schwarzschild
Hamed Hassani
M. Morari
George J. Pappas
363
511
0
12 Jun 2019
Evaluating the Robustness of Nearest Neighbor Classifiers: A Primal-Dual Perspective
Lu Wang
Xuanqing Liu
Jinfeng Yi
Zhi Zhou
Cho-Jui Hsieh
AAML
149
22
0
10 Jun 2019
Robustness Verification of Tree-based Models
Neural Information Processing Systems (NeurIPS), 2019
Hongge Chen
Huan Zhang
Si Si
Yang Li
Duane S. Boning
Cho-Jui Hsieh
AAML
215
87
0
10 Jun 2019
Provably Robust Deep Learning via Adversarially Trained Smoothed Classifiers
Neural Information Processing Systems (NeurIPS), 2019
Hadi Salman
Greg Yang
Jungshian Li
Pengchuan Zhang
Huan Zhang
Ilya P. Razenshteyn
Sébastien Bubeck
AAML
577
588
0
09 Jun 2019
Provably Robust Boosted Decision Stumps and Trees against Adversarial Attacks
Neural Information Processing Systems (NeurIPS), 2019
Maksym Andriushchenko
Matthias Hein
187
66
0
08 Jun 2019
ML-LOO: Detecting Adversarial Examples with Feature Attribution
AAAI Conference on Artificial Intelligence (AAAI), 2019
Puyudi Yang
Jianbo Chen
Cho-Jui Hsieh
Jane-ling Wang
Sai Li
AAML
157
110
0
08 Jun 2019
Enhancing Gradient-based Attacks with Symbolic Intervals
Shiqi Wang
Yizheng Chen
Ahmed Abdou
Suman Jana
AAML
104
15
0
05 Jun 2019
Adversarial Training is a Form of Data-dependent Operator Norm Regularization
Kevin Roth
Yannic Kilcher
Thomas Hofmann
186
13
0
04 Jun 2019
Architecture Selection via the Trade-off Between Accuracy and Robustness
Zhun Deng
Cynthia Dwork
Jialiang Wang
Yao-Min Zhao
AAML
228
5
0
04 Jun 2019
Correctness Verification of Neural Networks
Yichen Yang
Martin Rinard
AAML
135
13
0
03 Jun 2019
Fast and Stable Interval Bounds Propagation for Training Verifiably Robust Models
The European Symposium on Artificial Neural Networks (ESANN), 2019
P. Morawiecki
Przemysław Spurek
Marek Śmieja
Jacek Tabor
AAML
OOD
107
9
0
03 Jun 2019
Heterogeneous Gaussian Mechanism: Preserving Differential Privacy in Deep Learning with Provable Robustness
International Joint Conference on Artificial Intelligence (IJCAI), 2019
Nhathai Phan
Minh Nhat Vu
Yang Liu
R. Jin
Dejing Dou
Xintao Wu
My T. Thai
AAML
129
56
0
02 Jun 2019
Unlabeled Data Improves Adversarial Robustness
Neural Information Processing Systems (NeurIPS), 2019
Y. Carmon
Aditi Raghunathan
Ludwig Schmidt
Abigail Z. Jacobs
John C. Duchi
482
788
0
31 May 2019
Securing Connected & Autonomous Vehicles: Challenges Posed by Adversarial Machine Learning and The Way Forward
IEEE Communications Surveys and Tutorials (COMST), 2019
A. Qayyum
Muhammad Usama
Junaid Qadir
Ala I. Al-Fuqaha
AAML
164
209
0
29 May 2019
Empirically Measuring Concentration: Fundamental Limits on Intrinsic Robustness
Neural Information Processing Systems (NeurIPS), 2019
Saeed Mahloujifar
Xiao Zhang
Mohammad Mahmoody
David Evans
217
23
0
29 May 2019
Controlling Neural Level Sets
Neural Information Processing Systems (NeurIPS), 2019
Matan Atzmon
Niv Haim
Lior Yariv
Ofer Israelov
Haggai Maron
Y. Lipman
AI4CE
139
129
0
28 May 2019
Adversarially Robust Learning Could Leverage Computational Hardness
International Conference on Algorithmic Learning Theory (ALT), 2019
Sanjam Garg
S. Jha
Saeed Mahloujifar
Mohammad Mahmoody
AAML
297
24
0
28 May 2019
Scaleable input gradient regularization for adversarial robustness
Machine Learning with Applications (MLWA), 2019
Chris Finlay
Adam M. Oberman
AAML
237
84
0
27 May 2019
Previous
1
2
3
...
15
16
17
18
19
20
Next