ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1712.02390
  4. Cited By
Noisy Natural Gradient as Variational Inference
v1v2 (latest)

Noisy Natural Gradient as Variational Inference

6 December 2017
Guodong Zhang
Shengyang Sun
David Duvenaud
Roger C. Grosse
    ODL
ArXiv (abs)PDFHTML

Papers citing "Noisy Natural Gradient as Variational Inference"

50 / 104 papers shown
Title
Addressing the Inconsistency in Bayesian Deep Learning via Generalized Laplace Approximation
Addressing the Inconsistency in Bayesian Deep Learning via Generalized Laplace Approximation
Yinsong Chen
Samson S. Yu
Zhong Li
Chee Peng Lim
BDL
78
0
0
01 Jul 2025
Spectral-factorized Positive-definite Curvature Learning for NN Training
Spectral-factorized Positive-definite Curvature Learning for NN Training
Wu Lin
Felix Dangel
Runa Eschenhagen
Juhan Bae
Richard E. Turner
Roger B. Grosse
171
0
0
10 Feb 2025
Learning Hyperparameters via a Data-Emphasized Variational Objective
Learning Hyperparameters via a Data-Emphasized Variational Objective
Ethan Harvey
Mikhail Petrov
Michael C. Hughes
116
0
0
03 Feb 2025
Improving Generalization with Flat Hilbert Bayesian Inference
Improving Generalization with Flat Hilbert Bayesian Inference
Tuan Truong
Quyen Tran
Quan Pham-Ngoc
Nhat Ho
Dinh Q. Phung
T. Le
71
1
0
05 Oct 2024
Linearization Turns Neural Operators into Function-Valued Gaussian Processes
Linearization Turns Neural Operators into Function-Valued Gaussian Processes
Emilia Magnani
Marvin Pfortner
Tobias Weber
Philipp Hennig
UQCV
131
1
0
07 Jun 2024
Scalable Bayesian Learning with posteriors
Scalable Bayesian Learning with posteriors
Samuel Duffield
Kaelan Donatella
Johnathan Chiu
Phoebe Klett
Daniel Simpson
BDLUQCV
178
2
0
31 May 2024
Affine Invariant Ensemble Transform Methods to Improve Predictive
  Uncertainty in Neural Networks
Affine Invariant Ensemble Transform Methods to Improve Predictive Uncertainty in Neural Networks
Diksha Bhandari
Jakiw Pidstrigach
Sebastian Reich
79
1
0
09 Sep 2023
Target Detection on Hyperspectral Images Using MCMC and VI Trained
  Bayesian Neural Networks
Target Detection on Hyperspectral Images Using MCMC and VI Trained Bayesian Neural Networks
Daniel Ries
Jason Adams
J. Zollweg
BDL
69
1
0
11 Aug 2023
Prediction-Oriented Bayesian Active Learning
Prediction-Oriented Bayesian Active Learning
Freddie Bickford-Smith
Andreas Kirsch
Sebastian Farquhar
Y. Gal
Adam Foster
Tom Rainforth
87
36
0
17 Apr 2023
Forward-backward Gaussian variational inference via JKO in the
  Bures-Wasserstein Space
Forward-backward Gaussian variational inference via JKO in the Bures-Wasserstein Space
Michael Diao
Krishnakumar Balasubramanian
Sinho Chewi
Adil Salim
BDL
68
29
0
10 Apr 2023
Exploration via Epistemic Value Estimation
Exploration via Epistemic Value Estimation
Simon Schmitt
John Shawe-Taylor
Hado van Hasselt
OffRL
43
3
0
07 Mar 2023
Making Substitute Models More Bayesian Can Enhance Transferability of
  Adversarial Examples
Making Substitute Models More Bayesian Can Enhance Transferability of Adversarial Examples
Qizhang Li
Yiwen Guo
W. Zuo
Hao Chen
AAML
125
37
0
10 Feb 2023
Hierarchically Structured Task-Agnostic Continual Learning
Hierarchically Structured Task-Agnostic Continual Learning
Heinke Hihn
Daniel A. Braun
BDLCLL
89
9
0
14 Nov 2022
The Implicit Delta Method
The Implicit Delta Method
Nathan Kallus
James McInerney
52
2
0
11 Nov 2022
On the optimization and pruning for Bayesian deep learning
On the optimization and pruning for Bayesian deep learning
X. Ke
Yanan Fan
BDLUQCV
77
1
0
24 Oct 2022
Approximate Bayesian Neural Operators: Uncertainty Quantification for
  Parametric PDEs
Approximate Bayesian Neural Operators: Uncertainty Quantification for Parametric PDEs
Emilia Magnani
Nicholas Kramer
Runa Eschenhagen
Lorenzo Rosasco
Philipp Hennig
UQCVBDL
62
13
0
02 Aug 2022
Variational inference via Wasserstein gradient flows
Variational inference via Wasserstein gradient flows
Marc Lambert
Sinho Chewi
Francis R. Bach
Silvère Bonnabel
Philippe Rigollet
BDLDRL
101
77
0
31 May 2022
Deep Ensemble as a Gaussian Process Approximate Posterior
Deep Ensemble as a Gaussian Process Approximate Posterior
Zhijie Deng
Feng Zhou
Jianfei Chen
Guoqiang Wu
Jun Zhu
UQCV
41
5
0
30 Apr 2022
Invariance Learning in Deep Neural Networks with Differentiable Laplace
  Approximations
Invariance Learning in Deep Neural Networks with Differentiable Laplace Approximations
Alexander Immer
Tycho F. A. van der Ouderaa
Gunnar Rätsch
Vincent Fortuin
Mark van der Wilk
BDL
147
48
0
22 Feb 2022
Gradient Descent on Neurons and its Link to Approximate Second-Order
  Optimization
Gradient Descent on Neurons and its Link to Approximate Second-Order Optimization
Frederik Benzing
ODL
127
26
0
28 Jan 2022
Mixtures of Laplace Approximations for Improved Post-Hoc Uncertainty in
  Deep Learning
Mixtures of Laplace Approximations for Improved Post-Hoc Uncertainty in Deep Learning
Runa Eschenhagen
Erik A. Daxberger
Philipp Hennig
Agustinus Kristiadi
UQCVBDL
73
23
0
05 Nov 2021
A Survey on Epistemic (Model) Uncertainty in Supervised Learning: Recent
  Advances and Applications
A Survey on Epistemic (Model) Uncertainty in Supervised Learning: Recent Advances and Applications
Xinlei Zhou
Han Liu
Farhad Pourpanah
T. Zeng
Xizhao Wang
UQCVUD
124
61
0
03 Nov 2021
Mixture-of-Variational-Experts for Continual Learning
Mixture-of-Variational-Experts for Continual Learning
Y. Yin
Yu Wang
CLLFedML
55
6
0
25 Oct 2021
Analytic natural gradient updates for Cholesky factor in Gaussian
  variational approximation
Analytic natural gradient updates for Cholesky factor in Gaussian variational approximation
Linda S. L. Tan
108
13
0
01 Sep 2021
Differentiable Annealed Importance Sampling and the Perils of Gradient
  Noise
Differentiable Annealed Importance Sampling and the Perils of Gradient Noise
Guodong Zhang
Kyle Hsu
Jianing Li
Chelsea Finn
Roger C. Grosse
87
40
0
21 Jul 2021
The Bayesian Learning Rule
The Bayesian Learning Rule
Mohammad Emtiyaz Khan
Håvard Rue
BDL
162
83
0
09 Jul 2021
A Survey of Uncertainty in Deep Neural Networks
A Survey of Uncertainty in Deep Neural Networks
J. Gawlikowski
Cedrique Rovile Njieutcheu Tassi
Mohsin Ali
Jongseo Lee
Matthias Humt
...
R. Roscher
Muhammad Shahzad
Wen Yang
R. Bamler
Xiaoxiang Zhu
BDLUQCVOOD
242
1,177
0
07 Jul 2021
KAISA: An Adaptive Second-Order Optimizer Framework for Deep Neural
  Networks
KAISA: An Adaptive Second-Order Optimizer Framework for Deep Neural Networks
J. G. Pauloski
Qi Huang
Lei Huang
Shivaram Venkataraman
Kyle Chard
Ian Foster
Zhao-jie Zhang
86
29
0
04 Jul 2021
On the Practicality of Deterministic Epistemic Uncertainty
On the Practicality of Deterministic Epistemic Uncertainty
Janis Postels
Mattia Segu
Tao Sun
Luca Sieber
Luc Van Gool
Feng Yu
Federico Tombari
UQCV
95
61
0
01 Jul 2021
Being a Bit Frequentist Improves Bayesian Neural Networks
Being a Bit Frequentist Improves Bayesian Neural Networks
Agustinus Kristiadi
Matthias Hein
Philipp Hennig
BDLUQCV
93
16
0
18 Jun 2021
Model Selection for Bayesian Autoencoders
Model Selection for Bayesian Autoencoders
Ba-Hien Tran
Simone Rossi
Dimitrios Milios
Pietro Michiardi
Edwin V. Bonilla
Maurizio Filippone
BDL
82
13
0
11 Jun 2021
Data augmentation in Bayesian neural networks and the cold posterior
  effect
Data augmentation in Bayesian neural networks and the cold posterior effect
Seth Nabarro
Stoil Ganev
Adrià Garriga-Alonso
Vincent Fortuin
Mark van der Wilk
Laurence Aitchison
BDL
92
41
0
10 Jun 2021
Sparse Uncertainty Representation in Deep Learning with Inducing Weights
Sparse Uncertainty Representation in Deep Learning with Inducing Weights
H. Ritter
Martin Kukla
Chen Zhang
Yingzhen Li
UQCVBDL
90
17
0
30 May 2021
Learning Uncertainty For Safety-Oriented Semantic Segmentation In
  Autonomous Driving
Learning Uncertainty For Safety-Oriented Semantic Segmentation In Autonomous Driving
Victor Besnier
David Picard
Alexandre Briot
UQCV
55
11
0
28 May 2021
Aleatoric uncertainty for Errors-in-Variables models in deep regression
Aleatoric uncertainty for Errors-in-Variables models in deep regression
J. Martin
Clemens Elster
UQCVUDBDL
79
9
0
19 May 2021
Priors in Bayesian Deep Learning: A Review
Priors in Bayesian Deep Learning: A Review
Vincent Fortuin
UQCVBDL
137
134
0
14 May 2021
What Are Bayesian Neural Network Posteriors Really Like?
What Are Bayesian Neural Network Posteriors Really Like?
Pavel Izmailov
Sharad Vikram
Matthew D. Hoffman
A. Wilson
UQCVBDL
81
389
0
29 Apr 2021
Scalable Marginal Likelihood Estimation for Model Selection in Deep
  Learning
Scalable Marginal Likelihood Estimation for Model Selection in Deep Learning
Alexander Immer
Matthias Bauer
Vincent Fortuin
Gunnar Rätsch
Mohammad Emtiyaz Khan
BDLUQCV
150
109
0
11 Apr 2021
Accurate and Reliable Forecasting using Stochastic Differential
  Equations
Accurate and Reliable Forecasting using Stochastic Differential Equations
Peng Cui
Zhijie Deng
Wenbo Hu
Jun Zhu
UQCV
75
1
0
28 Mar 2021
Tractable structured natural gradient descent using local
  parameterizations
Tractable structured natural gradient descent using local parameterizations
Wu Lin
Frank Nielsen
Mohammad Emtiyaz Khan
Mark Schmidt
146
30
0
15 Feb 2021
Infinitely Deep Bayesian Neural Networks with Stochastic Differential
  Equations
Infinitely Deep Bayesian Neural Networks with Stochastic Differential Equations
Winnie Xu
Ricky T. Q. Chen
Xuechen Li
David Duvenaud
BDLUQCV
92
49
0
12 Feb 2021
Bayesian Inference with Certifiable Adversarial Robustness
Bayesian Inference with Certifiable Adversarial Robustness
Matthew Wicker
Luca Laurenti
A. Patané
Zhoutong Chen
Zheng Zhang
Marta Z. Kwiatkowska
AAMLBDL
126
30
0
10 Feb 2021
Network Automatic Pruning: Start NAP and Take a Nap
Network Automatic Pruning: Start NAP and Take a Nap
Wenyuan Zeng
Yuwen Xiong
R. Urtasun
50
9
0
17 Jan 2021
The Hidden Uncertainty in a Neural Networks Activations
The Hidden Uncertainty in a Neural Networks Activations
Janis Postels
Hermann Blum
Yannick Strümpler
Cesar Cadena
Roland Siegwart
Luc Van Gool
Federico Tombari
UQCV
187
22
0
05 Dec 2020
Encoding the latent posterior of Bayesian Neural Networks for
  uncertainty quantification
Encoding the latent posterior of Bayesian Neural Networks for uncertainty quantification
Gianni Franchi
Andrei Bursuc
Emanuel Aldea
Séverine Dubuisson
Isabelle Bloch
BDLUQCV
94
27
0
04 Dec 2020
Semi-Supervised Learning with Variational Bayesian Inference and Maximum
  Uncertainty Regularization
Semi-Supervised Learning with Variational Bayesian Inference and Maximum Uncertainty Regularization
Kien Do
T. Tran
Svetha Venkatesh
BDL
53
3
0
03 Dec 2020
Eigenvalue-corrected Natural Gradient Based on a New Approximation
Eigenvalue-corrected Natural Gradient Based on a New Approximation
Kai-Xin Gao
Xiaolei Liu
Zheng-Hai Huang
Min Wang
Shuangling Wang
Zidong Wang
Dachuan Xu
F. Yu
ODL
38
7
0
27 Nov 2020
Generalized Variational Continual Learning
Generalized Variational Continual Learning
Noel Loo
S. Swaroop
Richard Turner
BDLCLL
93
60
0
24 Nov 2020
A Trace-restricted Kronecker-Factored Approximation to Natural Gradient
A Trace-restricted Kronecker-Factored Approximation to Natural Gradient
Kai-Xin Gao
Xiaolei Liu
Zheng-Hai Huang
Min Wang
Zidong Wang
Dachuan Xu
F. Yu
65
12
0
21 Nov 2020
Delta-STN: Efficient Bilevel Optimization for Neural Networks using
  Structured Response Jacobians
Delta-STN: Efficient Bilevel Optimization for Neural Networks using Structured Response Jacobians
Juhan Bae
Roger C. Grosse
73
24
0
26 Oct 2020
123
Next