Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1712.02390
Cited By
v1
v2 (latest)
Noisy Natural Gradient as Variational Inference
6 December 2017
Guodong Zhang
Shengyang Sun
David Duvenaud
Roger C. Grosse
ODL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Noisy Natural Gradient as Variational Inference"
50 / 104 papers shown
Title
Dissecting Hessian: Understanding Common Structure of Hessian in Neural Networks
Yikai Wu
Xingyu Zhu
Chenwei Wu
Annie Wang
Rong Ge
118
45
0
08 Oct 2020
Task Agnostic Continual Learning Using Online Variational Bayes with Fixed-Point Updates
Chen Zeno
Itay Golan
Elad Hoffer
Daniel Soudry
OOD
FedML
90
47
0
01 Oct 2020
Action and Perception as Divergence Minimization
Danijar Hafner
Pedro A. Ortega
Jimmy Ba
Thomas Parr
Karl J. Friston
N. Heess
91
53
0
03 Sep 2020
SDE-Net: Equipping Deep Neural Networks with Uncertainty Estimates
Lingkai Kong
Jimeng Sun
Chao Zhang
UQCV
107
108
0
24 Aug 2020
A statistical theory of cold posteriors in deep neural networks
Laurence Aitchison
UQCV
BDL
90
70
0
13 Aug 2020
Stochastic Bayesian Neural Networks
Abhinav Sagar
BDL
UQCV
48
0
0
12 Aug 2020
Descending through a Crowded Valley - Benchmarking Deep Learning Optimizers
Robin M. Schmidt
Frank Schneider
Philipp Hennig
ODL
217
168
0
03 Jul 2020
Estimating Model Uncertainty of Neural Networks in Sparse Information Form
Jongseo Lee
Matthias Humt
Jianxiang Feng
Rudolph Triebel
BDL
UQCV
103
47
0
20 Jun 2020
Global inducing point variational posteriors for Bayesian neural networks and deep Gaussian processes
Sebastian W. Ober
Laurence Aitchison
BDL
116
60
0
17 May 2020
Prior choice affects ability of Bayesian neural networks to identify unknowns
D. Silvestro
Tobias Andermann
UQCV
BDL
64
23
0
11 May 2020
Being Bayesian, Even Just a Bit, Fixes Overconfidence in ReLU Networks
Agustinus Kristiadi
Matthias Hein
Philipp Hennig
BDL
UQCV
90
290
0
24 Feb 2020
Handling the Positive-Definite Constraint in the Bayesian Learning Rule
Wu Lin
Mark Schmidt
Mohammad Emtiyaz Khan
BDL
181
36
0
24 Feb 2020
Being Bayesian about Categorical Probability
Taejong Joo
U. Chung
Minji Seo
UQCV
BDL
97
61
0
19 Feb 2020
Scalable and Practical Natural Gradient for Large-Scale Deep Learning
Kazuki Osawa
Yohei Tsuji
Yuichiro Ueno
Akira Naruse
Chuan-Sheng Foo
Rio Yokota
85
37
0
13 Feb 2020
Hierarchical Gaussian Process Priors for Bayesian Neural Network Weights
Theofanis Karaletsos
T. Bui
BDL
107
24
0
10 Feb 2020
The k-tied Normal Distribution: A Compact Parameterization of Gaussian Mean Field Posteriors in Bayesian Neural Networks
J. Swiatkowski
Kevin Roth
Bastiaan S. Veeling
Linh-Tam Tran
Joshua V. Dillon
Jasper Snoek
Stephan Mandt
Tim Salimans
Rodolphe Jenatton
Sebastian Nowozin
BDL
76
47
0
07 Feb 2020
Measuring Uncertainty through Bayesian Learning of Deep Neural Network Structure
Zhijie Deng
Yucen Luo
Jun Zhu
Bo Zhang
UQCV
BDL
43
2
0
22 Nov 2019
Bayesian interpretation of SGD as Ito process
Soma Yokoi
Issei Sato
43
5
0
20 Nov 2019
Optimizing Millions of Hyperparameters by Implicit Differentiation
Jonathan Lorraine
Paul Vicol
David Duvenaud
DD
139
417
0
06 Nov 2019
Challenges in Markov chain Monte Carlo for Bayesian neural networks
Theodore Papamarkou
Jacob D. Hinkle
M. T. Young
D. Womble
BDL
131
51
0
15 Oct 2019
Dissecting Non-Vacuous Generalization Bounds based on the Mean-Field Approximation
Konstantinos Pitas
73
8
0
06 Sep 2019
Sampling-free Epistemic Uncertainty Estimation Using Approximated Variance Propagation
Janis Postels
Francesco Ferroni
Huseyin Coskun
Nassir Navab
Federico Tombari
UQCV
UD
PER
BDL
147
140
0
01 Aug 2019
The Functional Neural Process
Christos Louizos
Xiahan Shi
Klamer Schutte
Max Welling
BDL
82
77
0
19 Jun 2019
Stochastic Neural Network with Kronecker Flow
Chin-Wei Huang
Ahmed Touati
Pascal Vincent
Gintare Karolina Dziugaite
Alexandre Lacoste
Aaron Courville
BDL
67
8
0
10 Jun 2019
Fast and Simple Natural-Gradient Variational Inference with Mixture of Exponential-family Approximations
Wu Lin
Mohammad Emtiyaz Khan
Mark Schmidt
BDL
99
71
0
07 Jun 2019
Practical Deep Learning with Bayesian Principles
Kazuki Osawa
S. Swaroop
Anirudh Jain
Runa Eschenhagen
Richard Turner
Rio Yokota
Mohammad Emtiyaz Khan
BDL
UQCV
167
247
0
06 Jun 2019
Evaluating Scalable Bayesian Deep Learning Methods for Robust Computer Vision
Fredrik K. Gustafsson
Martin Danelljan
Thomas B. Schon
OOD
UQCV
BDL
82
302
0
04 Jun 2019
Limitations of the Empirical Fisher Approximation for Natural Gradient Descent
Frederik Kunstner
Lukas Balles
Philipp Hennig
101
219
0
29 May 2019
Walsh-Hadamard Variational Inference for Bayesian Deep Learning
Simone Rossi
Sébastien Marmin
Maurizio Filippone
BDL
101
16
0
27 May 2019
Fast Convergence of Natural Gradient Descent for Overparameterized Neural Networks
Guodong Zhang
James Martens
Roger C. Grosse
ODL
113
126
0
27 May 2019
EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis
Chaoqi Wang
Roger C. Grosse
Sanja Fidler
Guodong Zhang
80
124
0
15 May 2019
Generalized Variational Inference: Three arguments for deriving new Posteriors
Jeremias Knoblauch
Jack Jewson
Theodoros Damoulas
DRL
BDL
109
106
0
03 Apr 2019
Functional Variational Bayesian Neural Networks
Shengyang Sun
Guodong Zhang
Jiaxin Shi
Roger C. Grosse
BDL
71
240
0
14 Mar 2019
Fisher-Bures Adversary Graph Convolutional Networks
Ke Sun
Piotr Koniusz
Zhen Wang
GNN
60
34
0
11 Mar 2019
Function Space Particle Optimization for Bayesian Neural Networks
Ziyu Wang
Zhaolin Ren
Jun Zhu
Bo Zhang
BDL
73
65
0
26 Feb 2019
An Empirical Study of Large-Batch Stochastic Gradient Descent with Structured Covariance Noise
Yeming Wen
Kevin Luk
Maxime Gazeau
Guodong Zhang
Harris Chan
Jimmy Ba
ODL
73
22
0
21 Feb 2019
Evaluating model calibration in classification
Juozas Vaicenavicius
David Widmann
Carl R. Andersson
Fredrik Lindsten
Jacob Roll
Thomas B. Schon
UQCV
182
200
0
19 Feb 2019
Manifold Optimization Assisted Gaussian Variational Approximation
Bingxin Zhou
Junbin Gao
Minh-Ngoc Tran
Richard Gerlach
67
6
0
11 Feb 2019
Radial and Directional Posteriors for Bayesian Neural Networks
Changyong Oh
Kamil Adamczewski
Mijung Park
BDL
115
20
0
07 Feb 2019
A Simple Baseline for Bayesian Uncertainty in Deep Learning
Wesley J. Maddox
T. Garipov
Pavel Izmailov
Dmitry Vetrov
A. Wilson
BDL
UQCV
150
810
0
07 Feb 2019
Predictive Uncertainty Quantification with Compound Density Networks
Agustinus Kristiadi
Sina Daubener
Asja Fischer
BDL
UQCV
68
17
0
04 Feb 2019
Bayesian Layers: A Module for Neural Network Uncertainty
Dustin Tran
Michael W. Dusenberry
Mark van der Wilk
Danijar Hafner
UQCV
BDL
131
124
0
10 Dec 2018
Eigenvalue Corrected Noisy Natural Gradient
Juhan Bae
Guodong Zhang
Roger C. Grosse
92
18
0
30 Nov 2018
Large-Scale Distributed Second-Order Optimization Using Kronecker-Factored Approximate Curvature for Deep Convolutional Neural Networks
Kazuki Osawa
Yohei Tsuji
Yuichiro Ueno
Akira Naruse
Rio Yokota
Satoshi Matsuoka
ODL
107
95
0
29 Nov 2018
SLANG: Fast Structured Covariance Approximations for Bayesian Deep Learning with Natural Gradient
Aaron Mishkin
Frederik Kunstner
Didrik Nielsen
Mark Schmidt
Mohammad Emtiyaz Khan
BDL
UQCV
90
60
0
11 Nov 2018
Three Mechanisms of Weight Decay Regularization
Guodong Zhang
Chaoqi Wang
Bowen Xu
Roger C. Grosse
75
259
0
29 Oct 2018
Good Initializations of Variational Bayes for Deep Models
Simone Rossi
Pietro Michiardi
Maurizio Filippone
BDL
130
22
0
18 Oct 2018
Inhibited Softmax for Uncertainty Estimation in Neural Networks
Marcin Mo.zejko
Mateusz Susik
Rafal Karczewski
UQCV
75
29
0
03 Oct 2018
An elementary introduction to information geometry
Frank Nielsen
3DGS
54
223
0
17 Aug 2018
Bayesian filtering unifies adaptive and non-adaptive neural network optimization methods
Laurence Aitchison
ODL
125
21
0
19 Jul 2018
Previous
1
2
3
Next