ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1712.02390
  4. Cited By
Noisy Natural Gradient as Variational Inference
v1v2 (latest)

Noisy Natural Gradient as Variational Inference

6 December 2017
Guodong Zhang
Shengyang Sun
David Duvenaud
Roger C. Grosse
    ODL
ArXiv (abs)PDFHTML

Papers citing "Noisy Natural Gradient as Variational Inference"

50 / 104 papers shown
Title
Dissecting Hessian: Understanding Common Structure of Hessian in Neural
  Networks
Dissecting Hessian: Understanding Common Structure of Hessian in Neural Networks
Yikai Wu
Xingyu Zhu
Chenwei Wu
Annie Wang
Rong Ge
118
45
0
08 Oct 2020
Task Agnostic Continual Learning Using Online Variational Bayes with
  Fixed-Point Updates
Task Agnostic Continual Learning Using Online Variational Bayes with Fixed-Point Updates
Chen Zeno
Itay Golan
Elad Hoffer
Daniel Soudry
OODFedML
90
47
0
01 Oct 2020
Action and Perception as Divergence Minimization
Action and Perception as Divergence Minimization
Danijar Hafner
Pedro A. Ortega
Jimmy Ba
Thomas Parr
Karl J. Friston
N. Heess
91
53
0
03 Sep 2020
SDE-Net: Equipping Deep Neural Networks with Uncertainty Estimates
SDE-Net: Equipping Deep Neural Networks with Uncertainty Estimates
Lingkai Kong
Jimeng Sun
Chao Zhang
UQCV
107
108
0
24 Aug 2020
A statistical theory of cold posteriors in deep neural networks
A statistical theory of cold posteriors in deep neural networks
Laurence Aitchison
UQCVBDL
90
70
0
13 Aug 2020
Stochastic Bayesian Neural Networks
Abhinav Sagar
BDLUQCV
48
0
0
12 Aug 2020
Descending through a Crowded Valley - Benchmarking Deep Learning
  Optimizers
Descending through a Crowded Valley - Benchmarking Deep Learning Optimizers
Robin M. Schmidt
Frank Schneider
Philipp Hennig
ODL
217
168
0
03 Jul 2020
Estimating Model Uncertainty of Neural Networks in Sparse Information
  Form
Estimating Model Uncertainty of Neural Networks in Sparse Information Form
Jongseo Lee
Matthias Humt
Jianxiang Feng
Rudolph Triebel
BDLUQCV
103
47
0
20 Jun 2020
Global inducing point variational posteriors for Bayesian neural
  networks and deep Gaussian processes
Global inducing point variational posteriors for Bayesian neural networks and deep Gaussian processes
Sebastian W. Ober
Laurence Aitchison
BDL
116
60
0
17 May 2020
Prior choice affects ability of Bayesian neural networks to identify
  unknowns
Prior choice affects ability of Bayesian neural networks to identify unknowns
D. Silvestro
Tobias Andermann
UQCVBDL
64
23
0
11 May 2020
Being Bayesian, Even Just a Bit, Fixes Overconfidence in ReLU Networks
Being Bayesian, Even Just a Bit, Fixes Overconfidence in ReLU Networks
Agustinus Kristiadi
Matthias Hein
Philipp Hennig
BDLUQCV
90
290
0
24 Feb 2020
Handling the Positive-Definite Constraint in the Bayesian Learning Rule
Handling the Positive-Definite Constraint in the Bayesian Learning Rule
Wu Lin
Mark Schmidt
Mohammad Emtiyaz Khan
BDL
181
36
0
24 Feb 2020
Being Bayesian about Categorical Probability
Being Bayesian about Categorical Probability
Taejong Joo
U. Chung
Minji Seo
UQCVBDL
97
61
0
19 Feb 2020
Scalable and Practical Natural Gradient for Large-Scale Deep Learning
Scalable and Practical Natural Gradient for Large-Scale Deep Learning
Kazuki Osawa
Yohei Tsuji
Yuichiro Ueno
Akira Naruse
Chuan-Sheng Foo
Rio Yokota
85
37
0
13 Feb 2020
Hierarchical Gaussian Process Priors for Bayesian Neural Network Weights
Hierarchical Gaussian Process Priors for Bayesian Neural Network Weights
Theofanis Karaletsos
T. Bui
BDL
107
24
0
10 Feb 2020
The k-tied Normal Distribution: A Compact Parameterization of Gaussian
  Mean Field Posteriors in Bayesian Neural Networks
The k-tied Normal Distribution: A Compact Parameterization of Gaussian Mean Field Posteriors in Bayesian Neural Networks
J. Swiatkowski
Kevin Roth
Bastiaan S. Veeling
Linh-Tam Tran
Joshua V. Dillon
Jasper Snoek
Stephan Mandt
Tim Salimans
Rodolphe Jenatton
Sebastian Nowozin
BDL
76
47
0
07 Feb 2020
Measuring Uncertainty through Bayesian Learning of Deep Neural Network
  Structure
Measuring Uncertainty through Bayesian Learning of Deep Neural Network Structure
Zhijie Deng
Yucen Luo
Jun Zhu
Bo Zhang
UQCVBDL
43
2
0
22 Nov 2019
Bayesian interpretation of SGD as Ito process
Bayesian interpretation of SGD as Ito process
Soma Yokoi
Issei Sato
43
5
0
20 Nov 2019
Optimizing Millions of Hyperparameters by Implicit Differentiation
Optimizing Millions of Hyperparameters by Implicit Differentiation
Jonathan Lorraine
Paul Vicol
David Duvenaud
DD
139
417
0
06 Nov 2019
Challenges in Markov chain Monte Carlo for Bayesian neural networks
Challenges in Markov chain Monte Carlo for Bayesian neural networks
Theodore Papamarkou
Jacob D. Hinkle
M. T. Young
D. Womble
BDL
131
51
0
15 Oct 2019
Dissecting Non-Vacuous Generalization Bounds based on the Mean-Field
  Approximation
Dissecting Non-Vacuous Generalization Bounds based on the Mean-Field Approximation
Konstantinos Pitas
73
8
0
06 Sep 2019
Sampling-free Epistemic Uncertainty Estimation Using Approximated
  Variance Propagation
Sampling-free Epistemic Uncertainty Estimation Using Approximated Variance Propagation
Janis Postels
Francesco Ferroni
Huseyin Coskun
Nassir Navab
Federico Tombari
UQCVUDPERBDL
147
140
0
01 Aug 2019
The Functional Neural Process
The Functional Neural Process
Christos Louizos
Xiahan Shi
Klamer Schutte
Max Welling
BDL
82
77
0
19 Jun 2019
Stochastic Neural Network with Kronecker Flow
Stochastic Neural Network with Kronecker Flow
Chin-Wei Huang
Ahmed Touati
Pascal Vincent
Gintare Karolina Dziugaite
Alexandre Lacoste
Aaron Courville
BDL
67
8
0
10 Jun 2019
Fast and Simple Natural-Gradient Variational Inference with Mixture of
  Exponential-family Approximations
Fast and Simple Natural-Gradient Variational Inference with Mixture of Exponential-family Approximations
Wu Lin
Mohammad Emtiyaz Khan
Mark Schmidt
BDL
99
71
0
07 Jun 2019
Practical Deep Learning with Bayesian Principles
Practical Deep Learning with Bayesian Principles
Kazuki Osawa
S. Swaroop
Anirudh Jain
Runa Eschenhagen
Richard Turner
Rio Yokota
Mohammad Emtiyaz Khan
BDLUQCV
167
247
0
06 Jun 2019
Evaluating Scalable Bayesian Deep Learning Methods for Robust Computer
  Vision
Evaluating Scalable Bayesian Deep Learning Methods for Robust Computer Vision
Fredrik K. Gustafsson
Martin Danelljan
Thomas B. Schon
OODUQCVBDL
82
302
0
04 Jun 2019
Limitations of the Empirical Fisher Approximation for Natural Gradient
  Descent
Limitations of the Empirical Fisher Approximation for Natural Gradient Descent
Frederik Kunstner
Lukas Balles
Philipp Hennig
101
219
0
29 May 2019
Walsh-Hadamard Variational Inference for Bayesian Deep Learning
Walsh-Hadamard Variational Inference for Bayesian Deep Learning
Simone Rossi
Sébastien Marmin
Maurizio Filippone
BDL
101
16
0
27 May 2019
Fast Convergence of Natural Gradient Descent for Overparameterized
  Neural Networks
Fast Convergence of Natural Gradient Descent for Overparameterized Neural Networks
Guodong Zhang
James Martens
Roger C. Grosse
ODL
113
126
0
27 May 2019
EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis
EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis
Chaoqi Wang
Roger C. Grosse
Sanja Fidler
Guodong Zhang
80
124
0
15 May 2019
Generalized Variational Inference: Three arguments for deriving new
  Posteriors
Generalized Variational Inference: Three arguments for deriving new Posteriors
Jeremias Knoblauch
Jack Jewson
Theodoros Damoulas
DRLBDL
109
106
0
03 Apr 2019
Functional Variational Bayesian Neural Networks
Functional Variational Bayesian Neural Networks
Shengyang Sun
Guodong Zhang
Jiaxin Shi
Roger C. Grosse
BDL
71
240
0
14 Mar 2019
Fisher-Bures Adversary Graph Convolutional Networks
Fisher-Bures Adversary Graph Convolutional Networks
Ke Sun
Piotr Koniusz
Zhen Wang
GNN
60
34
0
11 Mar 2019
Function Space Particle Optimization for Bayesian Neural Networks
Function Space Particle Optimization for Bayesian Neural Networks
Ziyu Wang
Zhaolin Ren
Jun Zhu
Bo Zhang
BDL
73
65
0
26 Feb 2019
An Empirical Study of Large-Batch Stochastic Gradient Descent with
  Structured Covariance Noise
An Empirical Study of Large-Batch Stochastic Gradient Descent with Structured Covariance Noise
Yeming Wen
Kevin Luk
Maxime Gazeau
Guodong Zhang
Harris Chan
Jimmy Ba
ODL
73
22
0
21 Feb 2019
Evaluating model calibration in classification
Evaluating model calibration in classification
Juozas Vaicenavicius
David Widmann
Carl R. Andersson
Fredrik Lindsten
Jacob Roll
Thomas B. Schon
UQCV
182
200
0
19 Feb 2019
Manifold Optimization Assisted Gaussian Variational Approximation
Manifold Optimization Assisted Gaussian Variational Approximation
Bingxin Zhou
Junbin Gao
Minh-Ngoc Tran
Richard Gerlach
67
6
0
11 Feb 2019
Radial and Directional Posteriors for Bayesian Neural Networks
Radial and Directional Posteriors for Bayesian Neural Networks
Changyong Oh
Kamil Adamczewski
Mijung Park
BDL
115
20
0
07 Feb 2019
A Simple Baseline for Bayesian Uncertainty in Deep Learning
A Simple Baseline for Bayesian Uncertainty in Deep Learning
Wesley J. Maddox
T. Garipov
Pavel Izmailov
Dmitry Vetrov
A. Wilson
BDLUQCV
150
810
0
07 Feb 2019
Predictive Uncertainty Quantification with Compound Density Networks
Predictive Uncertainty Quantification with Compound Density Networks
Agustinus Kristiadi
Sina Daubener
Asja Fischer
BDLUQCV
68
17
0
04 Feb 2019
Bayesian Layers: A Module for Neural Network Uncertainty
Bayesian Layers: A Module for Neural Network Uncertainty
Dustin Tran
Michael W. Dusenberry
Mark van der Wilk
Danijar Hafner
UQCVBDL
131
124
0
10 Dec 2018
Eigenvalue Corrected Noisy Natural Gradient
Eigenvalue Corrected Noisy Natural Gradient
Juhan Bae
Guodong Zhang
Roger C. Grosse
92
18
0
30 Nov 2018
Large-Scale Distributed Second-Order Optimization Using
  Kronecker-Factored Approximate Curvature for Deep Convolutional Neural
  Networks
Large-Scale Distributed Second-Order Optimization Using Kronecker-Factored Approximate Curvature for Deep Convolutional Neural Networks
Kazuki Osawa
Yohei Tsuji
Yuichiro Ueno
Akira Naruse
Rio Yokota
Satoshi Matsuoka
ODL
107
95
0
29 Nov 2018
SLANG: Fast Structured Covariance Approximations for Bayesian Deep
  Learning with Natural Gradient
SLANG: Fast Structured Covariance Approximations for Bayesian Deep Learning with Natural Gradient
Aaron Mishkin
Frederik Kunstner
Didrik Nielsen
Mark Schmidt
Mohammad Emtiyaz Khan
BDLUQCV
90
60
0
11 Nov 2018
Three Mechanisms of Weight Decay Regularization
Three Mechanisms of Weight Decay Regularization
Guodong Zhang
Chaoqi Wang
Bowen Xu
Roger C. Grosse
75
259
0
29 Oct 2018
Good Initializations of Variational Bayes for Deep Models
Good Initializations of Variational Bayes for Deep Models
Simone Rossi
Pietro Michiardi
Maurizio Filippone
BDL
130
22
0
18 Oct 2018
Inhibited Softmax for Uncertainty Estimation in Neural Networks
Inhibited Softmax for Uncertainty Estimation in Neural Networks
Marcin Mo.zejko
Mateusz Susik
Rafal Karczewski
UQCV
75
29
0
03 Oct 2018
An elementary introduction to information geometry
An elementary introduction to information geometry
Frank Nielsen
3DGS
54
223
0
17 Aug 2018
Bayesian filtering unifies adaptive and non-adaptive neural network
  optimization methods
Bayesian filtering unifies adaptive and non-adaptive neural network optimization methods
Laurence Aitchison
ODL
125
21
0
19 Jul 2018
Previous
123
Next