ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.09188
  4. Cited By
Analysis of Langevin Monte Carlo via convex optimization
v1v2 (latest)

Analysis of Langevin Monte Carlo via convex optimization

26 February 2018
Alain Durmus
Szymon Majewski
B. Miasojedow
ArXiv (abs)PDFHTML

Papers citing "Analysis of Langevin Monte Carlo via convex optimization"

50 / 157 papers shown
Title
Mixing Time of the Proximal Sampler in Relative Fisher Information via Strong Data Processing Inequality
Mixing Time of the Proximal Sampler in Relative Fisher Information via Strong Data Processing Inequality
Andre Wibisono
120
1
0
01 Jul 2025
Noise Conditional Variational Score Distillation
Xinyu Peng
Ziyang Zheng
Yaoming Wang
Han Li
Nuowen Kan
Wenrui Dai
Chenglin Li
Junni Zou
Hongkai Xiong
DiffM
99
0
0
11 Jun 2025
Sequential Monte Carlo approximations of Wasserstein--Fisher--Rao gradient flows
Sequential Monte Carlo approximations of Wasserstein--Fisher--Rao gradient flows
Francesca R. Crucinio
Sahani Pathiraja
48
0
0
06 Jun 2025
Privacy Amplification Through Synthetic Data: Insights from Linear Regression
Clément Pierquin
A. Bellet
Marc Tommasi
Matthieu Boussard
MIACV
105
0
0
05 Jun 2025
Strictly Constrained Generative Modeling via Split Augmented Langevin Sampling
Strictly Constrained Generative Modeling via Split Augmented Langevin Sampling
Matthieu Blanke
Yongquan Qu
Sara Shamekh
Pierre Gentine
DiffM
53
0
0
23 May 2025
Operator-Level Quantum Acceleration of Non-Logconcave Sampling
Operator-Level Quantum Acceleration of Non-Logconcave Sampling
Jiaqi Leng
Zhiyan Ding
Zherui Chen
Lin Lin
97
1
0
08 May 2025
Beyond Propagation of Chaos: A Stochastic Algorithm for Mean Field Optimization
Beyond Propagation of Chaos: A Stochastic Algorithm for Mean Field Optimization
Chandan Tankala
Dheeraj M. Nagaraj
Anant Raj
67
1
0
17 Mar 2025
Diffusion at Absolute Zero: Langevin Sampling Using Successive Moreau Envelopes [conference paper]
Diffusion at Absolute Zero: Langevin Sampling Using Successive Moreau Envelopes [conference paper]
Andreas Habring
Alexander Falk
Thomas Pock
106
0
0
03 Feb 2025
Convergence Analysis of the Wasserstein Proximal Algorithm beyond Geodesic Convexity
Convergence Analysis of the Wasserstein Proximal Algorithm beyond Geodesic Convexity
Shuailong Zhu
Xiaohui Chen
106
0
0
25 Jan 2025
Computational and Statistical Asymptotic Analysis of the JKO Scheme for Iterative Algorithms to update distributions
Computational and Statistical Asymptotic Analysis of the JKO Scheme for Iterative Algorithms to update distributions
Shang Wu
Yazhen Wang
104
0
0
11 Jan 2025
Non-geodesically-convex optimization in the Wasserstein space
Non-geodesically-convex optimization in the Wasserstein space
Hoang Phuc Hau Luu
Hanlin Yu
Bernardo Williams
Petrus Mikkola
Marcelo Hartmann
Kai Puolamaki
Arto Klami
124
2
0
08 Jan 2025
Constrained Sampling with Primal-Dual Langevin Monte Carlo
Constrained Sampling with Primal-Dual Langevin Monte Carlo
Luiz F. O. Chamon
Mohammad Reza Karimi
Anna Korba
82
3
0
08 Jan 2025
A Proximal Newton Adaptive Importance Sampler
A Proximal Newton Adaptive Importance Sampler
Victor Elvira
Émilie Chouzenoux
O. Deniz Akyildiz
171
0
0
21 Dec 2024
Covariance estimation using Markov chain Monte Carlo
Covariance estimation using Markov chain Monte Carlo
Yunbum Kook
Matthew Shunshi Zhang
57
1
0
22 Oct 2024
Provable Convergence and Limitations of Geometric Tempering for Langevin Dynamics
Provable Convergence and Limitations of Geometric Tempering for Langevin Dynamics
Omar Chehab
Anna Korba
Austin Stromme
Adrien Vacher
153
4
0
13 Oct 2024
Rényi-infinity constrained sampling with $d^3$ membership queries
Rényi-infinity constrained sampling with d3d^3d3 membership queries
Yunbum Kook
Matthew Shunshi Zhang
63
1
0
17 Jul 2024
Kinetic Interacting Particle Langevin Monte Carlo
Kinetic Interacting Particle Langevin Monte Carlo
Paul Felix Valsecchi Oliva
O. Deniz Akyildiz
110
6
0
08 Jul 2024
Proximal Interacting Particle Langevin Algorithms
Proximal Interacting Particle Langevin Algorithms
Paula Cordero Encinar
F. R. Crucinio
O. Deniz Akyildiz
104
5
0
20 Jun 2024
More Efficient Randomized Exploration for Reinforcement Learning via
  Approximate Sampling
More Efficient Randomized Exploration for Reinforcement Learning via Approximate Sampling
Haque Ishfaq
Yixin Tan
Yu Yang
Qingfeng Lan
Jianfeng Lu
A. Rupam Mahmood
Doina Precup
Pan Xu
89
5
0
18 Jun 2024
Convergence rates of particle approximation of forward-backward
  splitting algorithm for granular medium equations
Convergence rates of particle approximation of forward-backward splitting algorithm for granular medium equations
Matej Benko
Iwona Chlebicka
Jorgen Endal
B. Miasojedow
89
1
0
28 May 2024
The Poisson Midpoint Method for Langevin Dynamics: Provably Efficient
  Discretization for Diffusion Models
The Poisson Midpoint Method for Langevin Dynamics: Provably Efficient Discretization for Diffusion Models
S. Kandasamy
Dheeraj M. Nagaraj
DiffM
71
3
0
27 May 2024
Faster Sampling via Stochastic Gradient Proximal Sampler
Faster Sampling via Stochastic Gradient Proximal Sampler
Xunpeng Huang
Difan Zou
Yian Ma
Hanze Dong
Tong Zhang
91
3
0
27 May 2024
In-and-Out: Algorithmic Diffusion for Sampling Convex Bodies
In-and-Out: Algorithmic Diffusion for Sampling Convex Bodies
Yunbum Kook
Santosh Vempala
Matthew Shunshi Zhang
82
8
0
02 May 2024
Convergence of coordinate ascent variational inference for log-concave
  measures via optimal transport
Convergence of coordinate ascent variational inference for log-concave measures via optimal transport
Manuel Arnese
Daniel Lacker
46
11
0
12 Apr 2024
Unsupervised Training of Convex Regularizers using Maximum Likelihood Estimation
Unsupervised Training of Convex Regularizers using Maximum Likelihood Estimation
Hongwei Tan
Ziruo Cai
Marcelo Pereyra
Subhadip Mukherjee
Junqi Tang
Carola-Bibiane Schönlieb
SSL
95
1
0
08 Apr 2024
Proximal Oracles for Optimization and Sampling
Proximal Oracles for Optimization and Sampling
Jiaming Liang
Yongxin Chen
89
3
0
02 Apr 2024
An Improved Analysis of Langevin Algorithms with Prior Diffusion for
  Non-Log-Concave Sampling
An Improved Analysis of Langevin Algorithms with Prior Diffusion for Non-Log-Concave Sampling
Xunpeng Huang
Hanze Dong
Difan Zou
Tong Zhang
67
0
0
10 Mar 2024
Parallelized Midpoint Randomization for Langevin Monte Carlo
Parallelized Midpoint Randomization for Langevin Monte Carlo
Lu Yu
A. Dalalyan
75
7
0
22 Feb 2024
Regularization by denoising: Bayesian model and Langevin-within-split
  Gibbs sampling
Regularization by denoising: Bayesian model and Langevin-within-split Gibbs sampling
Elhadji C. Faye
Mame Diarra Fall
N. Dobigeon
76
4
0
19 Feb 2024
Optimal score estimation via empirical Bayes smoothing
Optimal score estimation via empirical Bayes smoothing
Andre Wibisono
Yihong Wu
Kaylee Yingxi Yang
86
27
0
12 Feb 2024
Sampling from the Mean-Field Stationary Distribution
Sampling from the Mean-Field Stationary Distribution
Yunbum Kook
Matthew Shunshi Zhang
Sinho Chewi
Murat A. Erdogdu
Mufan Li
120
7
0
12 Feb 2024
Implicit Diffusion: Efficient Optimization through Stochastic Sampling
Implicit Diffusion: Efficient Optimization through Stochastic Sampling
Pierre Marion
Anna Korba
Peter Bartlett
Mathieu Blondel
Valentin De Bortoli
Arnaud Doucet
Felipe Llinares-López
Courtney Paquette
Quentin Berthet
154
15
0
08 Feb 2024
An approximate operator-based learning method for the numerical
  solutions of stochastic differential equations
An approximate operator-based learning method for the numerical solutions of stochastic differential equations
Jingyuan Li
Wei Liu
53
0
0
13 Dec 2023
A connection between Tempering and Entropic Mirror Descent
A connection between Tempering and Entropic Mirror Descent
Nicolas Chopin
F. R. Crucinio
Anna Korba
58
14
0
18 Oct 2023
Ito Diffusion Approximation of Universal Ito Chains for Sampling,
  Optimization and Boosting
Ito Diffusion Approximation of Universal Ito Chains for Sampling, Optimization and Boosting
Aleksei Ustimenko
Aleksandr Beznosikov
82
1
0
09 Oct 2023
Sampling via Gradient Flows in the Space of Probability Measures
Sampling via Gradient Flows in the Space of Probability Measures
Yifan Chen
Daniel Zhengyu Huang
Jiaoyang Huang
Sebastian Reich
Andrew M. Stuart
66
15
0
05 Oct 2023
Subgradient Langevin Methods for Sampling from Non-smooth Potentials
Subgradient Langevin Methods for Sampling from Non-smooth Potentials
Andreas Habring
M. Holler
Thomas Pock
69
8
0
02 Aug 2023
Wasserstein Mirror Gradient Flow as the limit of the Sinkhorn Algorithm
Wasserstein Mirror Gradient Flow as the limit of the Sinkhorn Algorithm
Nabarun Deb
Young-Heon Kim
Soumik Pal
Geoffrey Schiebinger
66
12
0
31 Jul 2023
Proximal Langevin Sampling With Inexact Proximal Mapping
Proximal Langevin Sampling With Inexact Proximal Mapping
Matthias Joachim Ehrhardt
Lorenz Kuger
Carola-Bibiane Schönlieb
59
6
0
30 Jun 2023
Fast Conditional Mixing of MCMC Algorithms for Non-log-concave
  Distributions
Fast Conditional Mixing of MCMC Algorithms for Non-log-concave Distributions
Xiang Cheng
Bohan Wang
J.N. Zhang
Yusong Zhu
78
6
0
18 Jun 2023
Contraction Rate Estimates of Stochastic Gradient Kinetic Langevin
  Integrators
Contraction Rate Estimates of Stochastic Gradient Kinetic Langevin Integrators
Benedict Leimkuhler
Daniel Paulin
Peter Whalley
68
6
0
14 Jun 2023
Langevin Monte Carlo for strongly log-concave distributions: Randomized
  midpoint revisited
Langevin Monte Carlo for strongly log-concave distributions: Randomized midpoint revisited
Lu Yu
Avetik G. Karagulyan
A. Dalalyan
65
7
0
14 Jun 2023
Non-Log-Concave and Nonsmooth Sampling via Langevin Monte Carlo
  Algorithms
Non-Log-Concave and Nonsmooth Sampling via Langevin Monte Carlo Algorithms
Tim Tsz-Kit Lau
Han Liu
Thomas Pock
88
4
0
25 May 2023
Learning Rate Free Sampling in Constrained Domains
Learning Rate Free Sampling in Constrained Domains
Louis Sharrock
Lester W. Mackey
Christopher Nemeth
69
2
0
24 May 2023
NF-ULA: Langevin Monte Carlo with Normalizing Flow Prior for Imaging
  Inverse Problems
NF-ULA: Langevin Monte Carlo with Normalizing Flow Prior for Imaging Inverse Problems
Ziruo Cai
Junqi Tang
Subhadip Mukherjee
Jinglai Li
Carola Bibiane Schönlieb
Xiaoqun Zhang
AI4CE
60
4
0
17 Apr 2023
Forward-backward Gaussian variational inference via JKO in the
  Bures-Wasserstein Space
Forward-backward Gaussian variational inference via JKO in the Bures-Wasserstein Space
Michael Diao
Krishnakumar Balasubramanian
Sinho Chewi
Adil Salim
BDL
68
29
0
10 Apr 2023
Approximate Primal-Dual Fixed-Point based Langevin Algorithms for
  Non-smooth Convex Potentials
Approximate Primal-Dual Fixed-Point based Langevin Algorithms for Non-smooth Convex Potentials
Ziruo Cai
Jinglai Li
Xiaoqun Zhang
26
1
0
10 Apr 2023
Query lower bounds for log-concave sampling
Query lower bounds for log-concave sampling
Sinho Chewi
Jaume de Dios Pont
Jerry Li
Chen Lu
Shyam Narayanan
88
8
0
05 Apr 2023
Efficient Sampling of Stochastic Differential Equations with Positive
  Semi-Definite Models
Efficient Sampling of Stochastic Differential Equations with Positive Semi-Definite Models
Anant Raj
Umut Simsekli
Alessandro Rudi
DiffM
105
2
0
30 Mar 2023
Interacting Particle Langevin Algorithm for Maximum Marginal Likelihood Estimation
Interacting Particle Langevin Algorithm for Maximum Marginal Likelihood Estimation
Ö. Deniz Akyildiz
F. R. Crucinio
Mark Girolami
Tim Johnston
Sotirios Sabanis
132
13
0
23 Mar 2023
1234
Next