Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1802.09188
Cited By
v1
v2 (latest)
Analysis of Langevin Monte Carlo via convex optimization
26 February 2018
Alain Durmus
Szymon Majewski
B. Miasojedow
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Analysis of Langevin Monte Carlo via convex optimization"
50 / 157 papers shown
Title
ELF: Federated Langevin Algorithms with Primal, Dual and Bidirectional Compression
Avetik G. Karagulyan
Peter Richtárik
FedML
64
6
0
08 Mar 2023
Towards a Complete Analysis of Langevin Monte Carlo: Beyond Poincaré Inequality
Alireza Mousavi-Hosseini
Tyler Farghly
Ye He
Krishnakumar Balasubramanian
Murat A. Erdogdu
116
27
0
07 Mar 2023
Mean-Square Analysis of Discretized Itô Diffusions for Heavy-tailed Sampling
Ye He
Tyler Farghly
Krishnakumar Balasubramanian
Murat A. Erdogdu
86
4
0
01 Mar 2023
An Explicit Expansion of the Kullback-Leibler Divergence along its Fisher-Rao Gradient Flow
Carles Domingo-Enrich
Aram-Alexandre Pooladian
MDE
92
12
0
23 Feb 2023
Contraction and Convergence Rates for Discretized Kinetic Langevin Dynamics
Benedict Leimkuhler
Daniel Paulin
Peter Whalley
130
16
0
21 Feb 2023
Improved dimension dependence of a proximal algorithm for sampling
JiaoJiao Fan
Bo Yuan
Yongxin Chen
81
25
0
20 Feb 2023
Algorithmic Aspects of the Log-Laplace Transform and a Non-Euclidean Proximal Sampler
Sivakanth Gopi
Y. Lee
Daogao Liu
Ruoqi Shen
Kevin Tian
93
7
0
13 Feb 2023
Coin Sampling: Gradient-Based Bayesian Inference without Learning Rates
Louis Sharrock
Christopher Nemeth
BDL
85
8
0
26 Jan 2023
Optimal Regularization for a Data Source
Oscar Leong
Eliza O'Reilly
Yong Sheng Soh
V. Chandrasekaran
50
4
0
27 Dec 2022
Regularized Rényi divergence minimization through Bregman proximal gradient algorithms
Thomas Guilmeau
Émilie Chouzenoux
Victor Elvira
75
3
0
09 Nov 2022
A Dynamical System View of Langevin-Based Non-Convex Sampling
Mohammad Reza Karimi
Ya-Ping Hsieh
Andreas Krause
78
4
0
25 Oct 2022
Sampling with Mollified Interaction Energy Descent
Lingxiao Li
Qiang Liu
Anna Korba
Mikhail Yurochkin
Justin Solomon
70
17
0
24 Oct 2022
Langevin dynamics based algorithm e-TH
ε
\varepsilon
ε
O POULA for stochastic optimization problems with discontinuous stochastic gradient
Dongjae Lim
Ariel Neufeld
Sotirios Sabanis
Ying Zhang
66
7
0
24 Oct 2022
Resolving the Mixing Time of the Langevin Algorithm to its Stationary Distribution for Log-Concave Sampling
Jason M. Altschuler
Kunal Talwar
96
25
0
16 Oct 2022
Condition-number-independent convergence rate of Riemannian Hamiltonian Monte Carlo with numerical integrators
Yunbum Kook
Y. Lee
Ruoqi Shen
Santosh Vempala
88
12
0
13 Oct 2022
Quantum Algorithms for Sampling Log-Concave Distributions and Estimating Normalizing Constants
Andrew M. Childs
Tongyang Li
Jin-Peng Liu
Cong Wang
Ruizhe Zhang
64
17
0
12 Oct 2022
Solving Fredholm Integral Equations of the First Kind via Wasserstein Gradient Flows
F. R. Crucinio
Valentin De Bortoli
Arnaud Doucet
A. M. Johansen
52
3
0
16 Sep 2022
Nesterov smoothing for sampling without smoothness
JiaoJiao Fan
Bo Yuan
Jiaming Liang
Yongxin Chen
89
2
0
15 Aug 2022
Bregman Proximal Langevin Monte Carlo via Bregman--Moreau Envelopes
Tim Tsz-Kit Lau
Han Liu
127
7
0
10 Jul 2022
Accelerating Hamiltonian Monte Carlo via Chebyshev Integration Time
Jun-Kun Wang
Andre Wibisono
97
9
0
05 Jul 2022
Stochastic Langevin Differential Inclusions with Applications to Machine Learning
F. Difonzo
Vyacheslav Kungurtsev
Jakub Mareˇcek
38
3
0
23 Jun 2022
Sampling from Log-Concave Distributions over Polytopes via a Soft-Threshold Dikin Walk
Oren Mangoubi
Nisheeth K. Vishnoi
117
2
0
19 Jun 2022
On the Computational Complexity of Metropolis-Adjusted Langevin Algorithms for Bayesian Posterior Sampling
Rong Tang
Yun Yang
51
5
0
13 Jun 2022
Concentration analysis of multivariate elliptic diffusion processes
Cathrine Aeckerle-Willems
Claudia Strauch
Lukas Trottner
88
1
0
07 Jun 2022
Federated Learning with a Sampling Algorithm under Isoperimetry
Lukang Sun
Adil Salim
Peter Richtárik
FedML
88
7
0
02 Jun 2022
Convergence of Stein Variational Gradient Descent under a Weaker Smoothness Condition
Lukang Sun
Avetik G. Karagulyan
Peter Richtárik
81
19
0
01 Jun 2022
Variational inference via Wasserstein gradient flows
Marc Lambert
Sinho Chewi
Francis R. Bach
Silvère Bonnabel
Philippe Rigollet
BDL
DRL
98
77
0
31 May 2022
A Proximal Algorithm for Sampling from Non-convex Potentials
Jiaming Liang
Yongxin Chen
121
4
0
20 May 2022
Particle algorithms for maximum likelihood training of latent variable models
Juan Kuntz
Jen Ning Lim
A. M. Johansen
FedML
109
23
0
27 Apr 2022
Convergence of the Riemannian Langevin Algorithm
Khashayar Gatmiry
Santosh Vempala
67
21
0
22 Apr 2022
Differentially Private Sampling from Rashomon Sets, and the Universality of Langevin Diffusion for Convex Optimization
Arun Ganesh
Abhradeep Thakurta
Jalaj Upadhyay
65
1
0
04 Apr 2022
Covid19 Reproduction Number: Credibility Intervals by Blockwise Proximal Monte Carlo Samplers
G. Fort
Barbara Pascal
P. Abry
N. Pustelnik
29
10
0
17 Mar 2022
Private Convex Optimization via Exponential Mechanism
Sivakanth Gopi
Y. Lee
Daogao Liu
141
54
0
01 Mar 2022
A Proximal Algorithm for Sampling
Jiaming Liang
Yongxin Chen
102
18
0
28 Feb 2022
Metropolis Adjusted Langevin Trajectories: a robust alternative to Hamiltonian Monte Carlo
L. Riou-Durand
Jure Vogrinc
88
15
0
26 Feb 2022
Sampling Approximately Low-Rank Ising Models: MCMC meets Variational Methods
Frederic Koehler
Holden Lee
Andrej Risteski
69
23
0
17 Feb 2022
Improved analysis for a proximal algorithm for sampling
Yongxin Chen
Sinho Chewi
Adil Salim
Andre Wibisono
105
58
0
13 Feb 2022
Towards a Theory of Non-Log-Concave Sampling: First-Order Stationarity Guarantees for Langevin Monte Carlo
Krishnakumar Balasubramanian
Sinho Chewi
Murat A. Erdogdu
Adil Salim
Matthew Shunshi Zhang
105
65
0
10 Feb 2022
Heavy-tailed Sampling via Transformed Unadjusted Langevin Algorithm
Ye He
Krishnakumar Balasubramanian
Murat A. Erdogdu
83
5
0
20 Jan 2022
On Convergence of Federated Averaging Langevin Dynamics
Wei Deng
Qian Zhang
Yi-An Ma
Zhao Song
Guang Lin
FedML
82
17
0
09 Dec 2021
Sampling from Log-Concave Distributions with Infinity-Distance Guarantees
Oren Mangoubi
Nisheeth K. Vishnoi
83
15
0
07 Nov 2021
A Proximal Algorithm for Sampling from Non-smooth Potentials
Jiaming Liang
Yongxin Chen
105
26
0
09 Oct 2021
When is the Convergence Time of Langevin Algorithms Dimension Independent? A Composite Optimization Viewpoint
Y. Freund
Yi-An Ma
Tong Zhang
72
16
0
05 Oct 2021
Sqrt(d) Dimension Dependence of Langevin Monte Carlo
Ruilin Li
H. Zha
Molei Tao
82
29
0
08 Sep 2021
Asymptotic bias of inexact Markov Chain Monte Carlo methods in high dimension
Alain Durmus
A. Eberle
81
20
0
02 Aug 2021
Non-asymptotic estimates for TUSLA algorithm for non-convex learning with applications to neural networks with ReLU activation function
Dongjae Lim
Ariel Neufeld
Sotirios Sabanis
Ying Zhang
80
20
0
19 Jul 2021
KALE Flow: A Relaxed KL Gradient Flow for Probabilities with Disjoint Support
Pierre Glaser
Michael Arbel
Arthur Gretton
121
40
0
16 Jun 2021
Lower Bounds on Metropolized Sampling Methods for Well-Conditioned Distributions
Y. Lee
Ruoqi Shen
Kevin Tian
54
20
0
10 Jun 2021
A Convergence Theory for SVGD in the Population Limit under Talagrand's Inequality T1
Adil Salim
Lukang Sun
Peter Richtárik
67
20
0
06 Jun 2021
QLSD: Quantised Langevin stochastic dynamics for Bayesian federated learning
Maxime Vono
Vincent Plassier
Alain Durmus
Aymeric Dieuleveut
Eric Moulines
FedML
93
36
0
01 Jun 2021
Previous
1
2
3
4
Next