ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1803.05407
  4. Cited By
Averaging Weights Leads to Wider Optima and Better Generalization

Averaging Weights Leads to Wider Optima and Better Generalization

14 March 2018
Pavel Izmailov
Dmitrii Podoprikhin
T. Garipov
Dmitry Vetrov
A. Wilson
    FedML
    MoMe
ArXivPDFHTML

Papers citing "Averaging Weights Leads to Wider Optima and Better Generalization"

50 / 305 papers shown
Title
Online, Informative MCMC Thinning with Kernelized Stein Discrepancy
Online, Informative MCMC Thinning with Kernelized Stein Discrepancy
Cole Hawkins
Alec Koppel
Zheng-Wei Zhang
37
4
0
18 Jan 2022
SpectraNet: Learned Recognition of Artificial Satellites From High
  Contrast Spectroscopic Imagery
SpectraNet: Learned Recognition of Artificial Satellites From High Contrast Spectroscopic Imagery
J. Gazak
Ian McQuaid
R. Swindle
M. Phelps
Justin Fletcher
9
14
0
10 Jan 2022
Stochastic Weight Averaging Revisited
Stochastic Weight Averaging Revisited
Hao Guo
Jiyong Jin
B. Liu
20
29
0
03 Jan 2022
SAE: Sequential Anchored Ensembles
SAE: Sequential Anchored Ensembles
Arnaud Delaunoy
Gilles Louppe
UQCV
BDL
11
0
0
30 Dec 2021
MVDG: A Unified Multi-view Framework for Domain Generalization
MVDG: A Unified Multi-view Framework for Domain Generalization
Jian Zhang
Lei Qi
Yinghuan Shi
Yang Gao
18
29
0
23 Dec 2021
Sharpness-Aware Minimization with Dynamic Reweighting
Sharpness-Aware Minimization with Dynamic Reweighting
Wenxuan Zhou
Fangyu Liu
Huan Zhang
Muhao Chen
AAML
19
8
0
16 Dec 2021
Data Augmentation Can Improve Robustness
Data Augmentation Can Improve Robustness
Sylvestre-Alvise Rebuffi
Sven Gowal
D. A. Calian
Florian Stimberg
Olivia Wiles
Timothy A. Mann
AAML
17
269
0
09 Nov 2021
A Survey on Epistemic (Model) Uncertainty in Supervised Learning: Recent
  Advances and Applications
A Survey on Epistemic (Model) Uncertainty in Supervised Learning: Recent Advances and Applications
Xinlei Zhou
Han Liu
Farhad Pourpanah
T. Zeng
Xizhao Wang
UQCV
UD
19
58
0
03 Nov 2021
Resampling Base Distributions of Normalizing Flows
Resampling Base Distributions of Normalizing Flows
Vincent Stimper
Bernhard Schölkopf
José Miguel Hernández-Lobato
BDL
22
32
0
29 Oct 2021
Meta-learning with an Adaptive Task Scheduler
Meta-learning with an Adaptive Task Scheduler
Huaxiu Yao
Yu-Xiang Wang
Ying Wei
P. Zhao
M. Mahdavi
Defu Lian
Chelsea Finn
OOD
24
45
0
26 Oct 2021
No One Representation to Rule Them All: Overlapping Features of Training
  Methods
No One Representation to Rule Them All: Overlapping Features of Training Methods
Raphael Gontijo-Lopes
Yann N. Dauphin
E. D. Cubuk
18
60
0
20 Oct 2021
Improving Robustness using Generated Data
Improving Robustness using Generated Data
Sven Gowal
Sylvestre-Alvise Rebuffi
Olivia Wiles
Florian Stimberg
D. A. Calian
Timothy A. Mann
20
293
0
18 Oct 2021
Towards Better Plasticity-Stability Trade-off in Incremental Learning: A
  Simple Linear Connector
Towards Better Plasticity-Stability Trade-off in Incremental Learning: A Simple Linear Connector
Guoliang Lin
Hanlu Chu
Hanjiang Lai
MoMe
CLL
29
43
0
15 Oct 2021
Multi-ACCDOA: Localizing and Detecting Overlapping Sounds from the Same
  Class with Auxiliary Duplicating Permutation Invariant Training
Multi-ACCDOA: Localizing and Detecting Overlapping Sounds from the Same Class with Auxiliary Duplicating Permutation Invariant Training
Kazuki Shimada
Yuichiro Koyama
Shusuke Takahashi
Naoya Takahashi
E. Tsunoo
Yuki Mitsufuji
13
63
0
14 Oct 2021
Study of positional encoding approaches for Audio Spectrogram
  Transformers
Study of positional encoding approaches for Audio Spectrogram Transformers
L. Pepino
Pablo Riera
Luciana Ferrer
ViT
23
6
0
13 Oct 2021
The Role of Permutation Invariance in Linear Mode Connectivity of Neural
  Networks
The Role of Permutation Invariance in Linear Mode Connectivity of Neural Networks
R. Entezari
Hanie Sedghi
O. Saukh
Behnam Neyshabur
MoMe
35
215
0
12 Oct 2021
Exploring Architectural Ingredients of Adversarially Robust Deep Neural
  Networks
Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks
Hanxun Huang
Yisen Wang
S. Erfani
Quanquan Gu
James Bailey
Xingjun Ma
AAML
TPM
44
100
0
07 Oct 2021
Improving Adversarial Robustness for Free with Snapshot Ensemble
Improving Adversarial Robustness for Free with Snapshot Ensemble
Yihao Wang
AAML
UQCV
9
1
0
07 Oct 2021
ResNet strikes back: An improved training procedure in timm
ResNet strikes back: An improved training procedure in timm
Ross Wightman
Hugo Touvron
Hervé Jégou
AI4TS
209
487
0
01 Oct 2021
Perturbated Gradients Updating within Unit Space for Deep Learning
Perturbated Gradients Updating within Unit Space for Deep Learning
Ching-Hsun Tseng
Liu Cheng
Shin-Jye Lee
Xiaojun Zeng
38
5
0
01 Oct 2021
iRNN: Integer-only Recurrent Neural Network
iRNN: Integer-only Recurrent Neural Network
Eyyub Sari
Vanessa Courville
V. Nia
MQ
42
4
0
20 Sep 2021
Connecting Low-Loss Subspace for Personalized Federated Learning
Connecting Low-Loss Subspace for Personalized Federated Learning
S. Hahn
Minwoo Jeong
Junghye Lee
FedML
14
18
0
16 Sep 2021
Fishr: Invariant Gradient Variances for Out-of-Distribution
  Generalization
Fishr: Invariant Gradient Variances for Out-of-Distribution Generalization
Alexandre Ramé
Corentin Dancette
Matthieu Cord
OOD
38
204
0
07 Sep 2021
Robust fine-tuning of zero-shot models
Robust fine-tuning of zero-shot models
Mitchell Wortsman
Gabriel Ilharco
Jong Wook Kim
Mike Li
Simon Kornblith
...
Raphael Gontijo-Lopes
Hannaneh Hajishirzi
Ali Farhadi
Hongseok Namkoong
Ludwig Schmidt
VLM
23
688
0
04 Sep 2021
Correlate-and-Excite: Real-Time Stereo Matching via Guided Cost Volume
  Excitation
Correlate-and-Excite: Real-Time Stereo Matching via Guided Cost Volume Excitation
Antyanta Bangunharcana
Jae-Won Cho
Seokju Lee
In So Kweon
Kyung-soo Kim
Soohyun Kim
11
67
0
12 Aug 2021
The Limiting Dynamics of SGD: Modified Loss, Phase Space Oscillations,
  and Anomalous Diffusion
The Limiting Dynamics of SGD: Modified Loss, Phase Space Oscillations, and Anomalous Diffusion
D. Kunin
Javier Sagastuy-Breña
Lauren Gillespie
Eshed Margalit
Hidenori Tanaka
Surya Ganguli
Daniel L. K. Yamins
28
15
0
19 Jul 2021
Federated Learning for Multi-Center Imaging Diagnostics: A Study in
  Cardiovascular Disease
Federated Learning for Multi-Center Imaging Diagnostics: A Study in Cardiovascular Disease
Akis Linardos
Kaisar Kushibar
S. Walsh
P. Gkontra
Karim Lekadir
FedML
25
62
0
07 Jul 2021
KOALA: A Kalman Optimization Algorithm with Loss Adaptivity
KOALA: A Kalman Optimization Algorithm with Loss Adaptivity
A. Davtyan
Sepehr Sameni
L. Cerkezi
Givi Meishvili
Adam Bielski
Paolo Favaro
ODL
51
2
0
07 Jul 2021
Oriental Language Recognition (OLR) 2020: Summary and Analysis
Oriental Language Recognition (OLR) 2020: Summary and Analysis
Jing Li
Binling Wang
Yiming Zhi
Zheng Li
Lin Li
Q. Hong
Dong Wang
14
10
0
05 Jul 2021
What can linear interpolation of neural network loss landscapes tell us?
What can linear interpolation of neural network loss landscapes tell us?
Tiffany J. Vlaar
Jonathan Frankle
MoMe
22
27
0
30 Jun 2021
Real-time Neural Radiance Caching for Path Tracing
Real-time Neural Radiance Caching for Path Tracing
Thomas Müller
Fabrice Rousselle
Jan Novák
A. Keller
3DH
AI4CE
25
155
0
23 Jun 2021
Humble Teachers Teach Better Students for Semi-Supervised Object
  Detection
Humble Teachers Teach Better Students for Semi-Supervised Object Detection
Yihe Tang
Weifeng Chen
Yijun Luo
Yuting Zhang
34
177
0
19 Jun 2021
Effective Evaluation of Deep Active Learning on Image Classification
  Tasks
Effective Evaluation of Deep Active Learning on Image Classification Tasks
Nathan Beck
D. Sivasubramanian
Apurva Dani
Ganesh Ramakrishnan
Rishabh K. Iyer
VLM
12
37
0
16 Jun 2021
Efficient and Accurate Gradients for Neural SDEs
Efficient and Accurate Gradients for Neural SDEs
Patrick Kidger
James Foster
Xuechen Li
Terry Lyons
DiffM
19
60
0
27 May 2021
Denoising Noisy Neural Networks: A Bayesian Approach with Compensation
Denoising Noisy Neural Networks: A Bayesian Approach with Compensation
Yulin Shao
Soung Chang Liew
Deniz Gunduz
56
14
0
22 May 2021
Fast and Accurate Quantized Camera Scene Detection on Smartphones,
  Mobile AI 2021 Challenge: Report
Fast and Accurate Quantized Camera Scene Detection on Smartphones, Mobile AI 2021 Challenge: Report
Andrey D. Ignatov
Grigory Malivenko
Radu Timofte
Sheng Chen
Xin Xia
...
K. Lyda
L. Khojoyan
Abhishek Thanki
Sayak Paul
Shahid Siddiqui
MQ
15
20
0
17 May 2021
Self-supervised Augmentation Consistency for Adapting Semantic
  Segmentation
Self-supervised Augmentation Consistency for Adapting Semantic Segmentation
Nikita Araslanov
Stefan Roth
25
226
0
30 Apr 2021
Post-training deep neural network pruning via layer-wise calibration
Post-training deep neural network pruning via layer-wise calibration
Ivan Lazarevich
Alexander Kozlov
Nikita Malinin
3DPC
8
25
0
30 Apr 2021
SelfReg: Self-supervised Contrastive Regularization for Domain
  Generalization
SelfReg: Self-supervised Contrastive Regularization for Domain Generalization
Daehee Kim
Seunghyun Park
Jinkyu Kim
Jaekoo Lee
OOD
SSL
62
264
0
20 Apr 2021
Relating Adversarially Robust Generalization to Flat Minima
Relating Adversarially Robust Generalization to Flat Minima
David Stutz
Matthias Hein
Bernt Schiele
OOD
22
65
0
09 Apr 2021
Domain Generalization: A Survey
Domain Generalization: A Survey
Kaiyang Zhou
Ziwei Liu
Yu Qiao
Tao Xiang
Chen Change Loy
OOD
AI4CE
42
980
0
03 Mar 2021
Fixing Data Augmentation to Improve Adversarial Robustness
Fixing Data Augmentation to Improve Adversarial Robustness
Sylvestre-Alvise Rebuffi
Sven Gowal
D. A. Calian
Florian Stimberg
Olivia Wiles
Timothy A. Mann
AAML
25
268
0
02 Mar 2021
A Multiclass Boosting Framework for Achieving Fast and Provable
  Adversarial Robustness
A Multiclass Boosting Framework for Achieving Fast and Provable Adversarial Robustness
Jacob D. Abernethy
Pranjal Awasthi
Satyen Kale
AAML
13
6
0
01 Mar 2021
Provable Super-Convergence with a Large Cyclical Learning Rate
Provable Super-Convergence with a Large Cyclical Learning Rate
Samet Oymak
28
12
0
22 Feb 2021
Learning Neural Network Subspaces
Learning Neural Network Subspaces
Mitchell Wortsman
Maxwell Horton
Carlos Guestrin
Ali Farhadi
Mohammad Rastegari
UQCV
13
85
0
20 Feb 2021
DEUP: Direct Epistemic Uncertainty Prediction
DEUP: Direct Epistemic Uncertainty Prediction
Salem Lahlou
Moksh Jain
Hadi Nekoei
V. Butoi
Paul Bertin
Jarrid Rector-Brooks
Maksym Korablyov
Yoshua Bengio
PER
UQLM
UQCV
UD
200
81
0
16 Feb 2021
Adversarially Robust Kernel Smoothing
Adversarially Robust Kernel Smoothing
Jia-Jie Zhu
Christina Kouridi
Yassine Nemmour
Bernhard Schölkopf
21
7
0
16 Feb 2021
Low Curvature Activations Reduce Overfitting in Adversarial Training
Low Curvature Activations Reduce Overfitting in Adversarial Training
Vasu Singla
Sahil Singla
David Jacobs
S. Feizi
AAML
32
45
0
15 Feb 2021
Consensus Control for Decentralized Deep Learning
Consensus Control for Decentralized Deep Learning
Lingjing Kong
Tao R. Lin
Anastasia Koloskova
Martin Jaggi
Sebastian U. Stich
19
75
0
09 Feb 2021
PSLA: Improving Audio Tagging with Pretraining, Sampling, Labeling, and
  Aggregation
PSLA: Improving Audio Tagging with Pretraining, Sampling, Labeling, and Aggregation
Yuan Gong
Yu-An Chung
James R. Glass
VLM
99
144
0
02 Feb 2021
Previous
1234567
Next