Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1805.08440
Cited By
Classification Uncertainty of Deep Neural Networks Based on Gradient Information
22 May 2018
Philipp Oberdiek
Matthias Rottmann
Hanno Gottschalk
UQCV
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Classification Uncertainty of Deep Neural Networks Based on Gradient Information"
48 / 48 papers shown
Title
ATM-Net: Anatomy-Aware Text-Guided Multi-Modal Fusion for Fine-Grained Lumbar Spine Segmentation
Sheng Lian
Dengfeng Pan
Jianlong Cai
Guang-Yong Chen
Zhun Zhong
Zhiming Luo
Shen Zhao
Shuo Li
36
0
0
04 Apr 2025
Revisiting Gradient-based Uncertainty for Monocular Depth Estimation
Julia Hornauer
Amir El-Ghoussani
Vasileios Belagiannis
UQCV
61
0
0
09 Feb 2025
Context-Based Echo State Networks with Prediction Confidence for Human-Robot Shared Control
Negin Amirshirzad
Mehmet Arda Eren
Erhan Oztop
67
0
0
30 Nov 2024
A Comprehensive Survey on Evidential Deep Learning and Its Applications
Junyu Gao
Mengyuan Chen
Liangyu Xiang
Changsheng Xu
EDL
BDL
UQCV
62
5
0
07 Sep 2024
Understanding the Dependence of Perception Model Competency on Regions in an Image
Sara Pohland
Claire Tomlin
19
1
0
15 Jul 2024
A Structured Review of Literature on Uncertainty in Machine Learning & Deep Learning
Fahimeh Fakour
Ali Mosleh
Ramin Ramezani
UQCV
UD
PER
51
3
0
01 Jun 2024
LUQ: Long-text Uncertainty Quantification for LLMs
Caiqi Zhang
Fangyu Liu
Marco Basaldella
Nigel Collier
HILM
58
25
0
29 Mar 2024
Uncertainty Driven Active Learning for Image Segmentation in Underwater Inspection
Luiza Ribeiro Marnet
Yury Brodskiy
Stella Grasshof
Andrzej Wasowski
32
2
0
20 Mar 2024
Uncertainty Quantification using Generative Approach
Yunsheng Zhang
UQCV
BDL
19
0
0
13 Oct 2023
Uncertainty quantification for deep learning-based schemes for solving high-dimensional backward stochastic differential equations
Lorenc Kapllani
Long Teng
Matthias Rottmann
27
1
0
05 Oct 2023
Out-of-Distribution Detection by Leveraging Between-Layer Transformation Smoothness
Fran Jelenić
Josip Jukić
Martin Tutek
Mate Puljiz
Jan vSnajder
OODD
34
5
0
04 Oct 2023
Look Before You Leap: An Exploratory Study of Uncertainty Measurement for Large Language Models
Yuheng Huang
Jiayang Song
Zhijie Wang
Shengming Zhao
Huaming Chen
Felix Juefei-Xu
Lei Ma
33
34
0
16 Jul 2023
GIT: Detecting Uncertainty, Out-Of-Distribution and Adversarial Samples using Gradients and Invariance Transformations
Julia Lust
Alexandru Paul Condurache
AAML
UQCV
29
0
0
05 Jul 2023
Single-model uncertainty quantification in neural network potentials does not consistently outperform model ensembles
Aik Rui Tan
S. Urata
Samuel Goldman
Johannes C. B. Dietschreit
Rafael Gómez-Bombarelli
BDL
43
42
0
02 May 2023
Compensation Learning in Semantic Segmentation
Timo Kaiser
Christoph Reinders
Bodo Rosenhahn
NoLa
42
3
0
26 Apr 2023
Probing the Purview of Neural Networks via Gradient Analysis
Jinsol Lee
Charles Lehman
Mohit Prabhushankar
Ghassan AlRegib
34
7
0
06 Apr 2023
Delay-SDE-net: A deep learning approach for time series modelling with memory and uncertainty estimates
M. Eggen
A. Midtfjord
29
2
0
14 Mar 2023
Pixel-wise Gradient Uncertainty for Convolutional Neural Networks applied to Out-of-Distribution Segmentation
Kira Maag
Tobias Riedlinger
UQCV
38
7
0
13 Mar 2023
Learning Complementary Policies for Human-AI Teams
Ruijiang Gao
M. Saar-Tsechansky
Maria De-Arteaga
Ligong Han
Wei-Ju Sun
Min Kyung Lee
Matthew Lease
38
8
0
06 Feb 2023
Generalized Uncertainty of Deep Neural Networks: Taxonomy and Applications
Chengyu Dong
OOD
UQCV
BDL
AI4CE
44
0
0
02 Feb 2023
Gradient-based Uncertainty for Monocular Depth Estimation
Julia Hornauer
Vasileios Belagiannis
UQCV
32
32
0
03 Aug 2022
Gradient-Based Adversarial and Out-of-Distribution Detection
Jinsol Lee
Mohit Prabhushankar
Ghassan AlRegib
UQCV
40
13
0
16 Jun 2022
Open-Set Recognition with Gradient-Based Representations
Jinsol Lee
Ghassan AlRegib
VLM
BDL
19
9
0
16 Jun 2022
WOOD: Wasserstein-based Out-of-Distribution Detection
Yinan Wang
Wenbo Sun
Jionghua Jin
Zhen Kong
Xiaowei Yue
OODD
20
8
0
13 Dec 2021
Benchmark for Out-of-Distribution Detection in Deep Reinforcement Learning
Aaqib Parvez Mohammed
Matias Valdenegro-Toro
OOD
OffRL
24
10
0
05 Dec 2021
Exploring the Limits of Epistemic Uncertainty Quantification in Low-Shot Settings
Matias Valdenegro-Toro
UQCV
25
2
0
18 Nov 2021
Latent Cognizance: What Machine Really Learns
Pisit Nakjai
J. Ponsawat
Tatpong Katanyukul
BDL
18
3
0
29 Oct 2021
Recognition Awareness: An Application of Latent Cognizance to Open-Set Recognition
Tatpong Katanyukul
Pisit Nakjai
BDL
27
1
0
27 Aug 2021
Resisting Out-of-Distribution Data Problem in Perturbation of XAI
Luyu Qiu
Yi Yang
Caleb Chen Cao
Jing Liu
Yueyuan Zheng
H. Ngai
J. H. Hsiao
Lei Chen
19
18
0
27 Jul 2021
Improving Variational Autoencoder based Out-of-Distribution Detection for Embedded Real-time Applications
Yeli Feng
Daniel Jun Xian Ng
Arvind Easwaran
OODD
38
17
0
25 Jul 2021
Gradient-Based Quantification of Epistemic Uncertainty for Deep Object Detectors
Tobias Riedlinger
Matthias Rottmann
Marius Schubert
Hanno Gottschalk
BDL
UQCV
14
12
0
09 Jul 2021
A Survey of Uncertainty in Deep Neural Networks
J. Gawlikowski
Cedrique Rovile Njieutcheu Tassi
Mohsin Ali
Jongseo Lee
Matthias Humt
...
R. Roscher
Muhammad Shahzad
Wen Yang
R. Bamler
Xiaoxiang Zhu
BDL
UQCV
OOD
66
1,112
0
07 Jul 2021
On the Practicality of Deterministic Epistemic Uncertainty
Janis Postels
Mattia Segu
Tao Sun
Luca Sieber
Luc Van Gool
Feng Yu
Federico Tombari
UQCV
38
60
0
01 Jul 2021
Fast whole-slide cartography in colon cancer histology using superpixels and CNN classification
Frauke Wilm
M. Benz
Volker Bruns
Serop Baghdadlian
Jakob Dexl
...
Thomas Wittenberg
S. Merkel
A. Hartmann
Markus Eckstein
C. Geppert
27
5
0
30 Jun 2021
Graceful Degradation and Related Fields
J. Dymond
36
4
0
21 Jun 2021
Inspect, Understand, Overcome: A Survey of Practical Methods for AI Safety
Sebastian Houben
Stephanie Abrecht
Maram Akila
Andreas Bär
Felix Brockherde
...
Serin Varghese
Michael Weber
Sebastian J. Wirkert
Tim Wirtz
Matthias Woehrle
AAML
13
58
0
29 Apr 2021
A Survey on Assessing the Generalization Envelope of Deep Neural Networks: Predictive Uncertainty, Out-of-distribution and Adversarial Samples
Julia Lust
Alexandru Paul Condurache
UQCV
AAML
AI4CE
29
8
0
21 Aug 2020
On the Difficulty of Membership Inference Attacks
Shahbaz Rezaei
Xin Liu
MIACV
22
13
0
27 May 2020
Detection and Retrieval of Out-of-Distribution Objects in Semantic Segmentation
Philipp Oberdiek
Matthias Rottmann
G. Fink
31
30
0
14 May 2020
Anomalous Example Detection in Deep Learning: A Survey
Saikiran Bulusu
B. Kailkhura
Bo Li
P. Varshney
D. Song
AAML
28
47
0
16 Mar 2020
Detection of False Positive and False Negative Samples in Semantic Segmentation
Matthias Rottmann
Kira Maag
Robin Shing Moon Chan
Fabian Hüger
Peter Schlicht
Hanno Gottschalk
UQCV
28
23
0
08 Dec 2019
Time-Dynamic Estimates of the Reliability of Deep Semantic Segmentation Networks
Kira Maag
Matthias Rottmann
Hanno Gottschalk
29
34
0
12 Nov 2019
Accurate Layerwise Interpretable Competence Estimation
Vickram Rajendran
Will LeVine
25
10
0
24 Oct 2019
Density estimation in representation space to predict model uncertainty
Tiago Ramalho
M. Corbalan
UQCV
BDL
16
38
0
20 Aug 2019
Uncertainty Measures and Prediction Quality Rating for the Semantic Segmentation of Nested Multi Resolution Street Scene Images
Matthias Rottmann
Marius Schubert
UQCV
27
38
0
09 Apr 2019
Prediction Error Meta Classification in Semantic Segmentation: Detection via Aggregated Dispersion Measures of Softmax Probabilities
Matthias Rottmann
Pascal Colling
Thomas-Paul Hack
Robin Shing Moon Chan
Fabian Hüger
Peter Schlicht
Hanno Gottschalk
UQCV
14
81
0
01 Nov 2018
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
359
5,849
0
08 Jul 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
287
9,167
0
06 Jun 2015
1