ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1805.11565
  4. Cited By
On gradient regularizers for MMD GANs
v1v2v3v4v5 (latest)

On gradient regularizers for MMD GANs

29 May 2018
Michael Arbel
Danica J. Sutherland
Mikolaj Binkowski
Arthur Gretton
ArXiv (abs)PDFHTML

Papers citing "On gradient regularizers for MMD GANs"

18 / 68 papers shown
Sobolev Independence Criterion
Sobolev Independence CriterionNeural Information Processing Systems (NeurIPS), 2019
Youssef Mroueh
Tom Sercu
Mattia Rigotti
Inkit Padhi
Cicero Nogueira dos Santos
178
5
0
31 Oct 2019
Two-sample Testing Using Deep Learning
Two-sample Testing Using Deep LearningInternational Conference on Artificial Intelligence and Statistics (AISTATS), 2019
Matthias Kirchler
S. Khorasani
Matthias Kirchler
Christoph Lippert
262
45
0
14 Oct 2019
A Characteristic Function Approach to Deep Implicit Generative Modeling
A Characteristic Function Approach to Deep Implicit Generative ModelingComputer Vision and Pattern Recognition (CVPR), 2019
Abdul Fatir Ansari
Jonathan Scarlett
Harold Soh
VLMGAN
149
44
0
16 Sep 2019
Statistical Inference for Generative Models with Maximum Mean
  Discrepancy
Statistical Inference for Generative Models with Maximum Mean Discrepancy
François‐Xavier Briol
Alessandro Barp
Andrew B. Duncan
Mark Girolami
235
79
0
13 Jun 2019
Maximum Mean Discrepancy Gradient Flow
Maximum Mean Discrepancy Gradient FlowNeural Information Processing Systems (NeurIPS), 2019
Michael Arbel
Anna Korba
Adil Salim
Arthur Gretton
355
181
0
11 Jun 2019
One-element Batch Training by Moving Window
One-element Batch Training by Moving Window
Przemysław Spurek
Szymon Knop
Jacek Tabor
Igor T. Podolak
B. Wójcik
VLM
106
0
0
30 May 2019
Learning Implicit Generative Models by Matching Perceptual Features
Learning Implicit Generative Models by Matching Perceptual Features
Cicero Nogueira dos Santos
Youssef Mroueh
Inkit Padhi
Pierre Dognin
GAN
161
30
0
04 Apr 2019
High-Fidelity Image Generation With Fewer Labels
High-Fidelity Image Generation With Fewer LabelsInternational Conference on Machine Learning (ICML), 2019
Mario Lucic
Michael Tschannen
Marvin Ritter
Xiaohua Zhai
Olivier Bachem
Sylvain Gelly
GANOOD
261
169
0
06 Mar 2019
Implicit Kernel Learning
Implicit Kernel LearningInternational Conference on Artificial Intelligence and Statistics (AISTATS), 2019
Chun-Liang Li
Wei-Cheng Chang
Youssef Mroueh
Yiming Yang
Barnabás Póczós
VLM
145
44
0
26 Feb 2019
Kernel-Guided Training of Implicit Generative Models with Stability
  Guarantees
Kernel-Guided Training of Implicit Generative Models with Stability Guarantees
Arash Mehrjou
Wittawat Jitkrittum
Krikamol Muandet
Bernhard Schölkopf
GAN
97
4
0
26 Jan 2019
Deep Generative Learning via Variational Gradient Flow
Deep Generative Learning via Variational Gradient Flow
Yuan Gao
Yuling Jiao
Yang Wang
Yao Wang
Can Yang
Shunkang Zhang
295
40
0
24 Jan 2019
Kernel Change-point Detection with Auxiliary Deep Generative Models
Kernel Change-point Detection with Auxiliary Deep Generative Models
Wei-Cheng Chang
Chun-Liang Li
Yiming Yang
Barnabás Póczós
212
77
0
18 Jan 2019
Adaptive Density Estimation for Generative Models
Adaptive Density Estimation for Generative Models
Thomas Lucas
K. Shmelkov
Alahari Karteek
Cordelia Schmid
Jakob Verbeek
GANDRL
350
33
0
04 Jan 2019
Improving MMD-GAN Training with Repulsive Loss Function
Improving MMD-GAN Training with Repulsive Loss Function
Wei Wang
Yuan Sun
Saman K. Halgamuge
GAN
299
82
0
24 Dec 2018
Learning deep kernels for exponential family densities
Learning deep kernels for exponential family densitiesInternational Conference on Machine Learning (ICML), 2018
W. Li
Danica J. Sutherland
Heiko Strathmann
Arthur Gretton
BDL
281
77
0
20 Nov 2018
Deep Knockoffs
Deep KnockoffsJournal of the American Statistical Association (JASA), 2018
Yaniv Romano
Matteo Sesia
Emmanuel J. Candès
BDL
286
157
0
16 Nov 2018
How Well Generative Adversarial Networks Learn Distributions
How Well Generative Adversarial Networks Learn DistributionsJournal of machine learning research (JMLR), 2018
Tengyuan Liang
GAN
307
110
0
07 Nov 2018
Interaction Matters: A Note on Non-asymptotic Local Convergence of
  Generative Adversarial Networks
Interaction Matters: A Note on Non-asymptotic Local Convergence of Generative Adversarial Networks
Tengyuan Liang
J. Stokes
284
222
0
16 Feb 2018
Previous
12