ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1805.11565
  4. Cited By
On gradient regularizers for MMD GANs

On gradient regularizers for MMD GANs

29 May 2018
Michael Arbel
Danica J. Sutherland
Mikolaj Binkowski
A. Gretton
ArXivPDFHTML

Papers citing "On gradient regularizers for MMD GANs"

22 / 22 papers shown
Title
Learning Deep Kernels for Non-Parametric Independence Testing
Learning Deep Kernels for Non-Parametric Independence Testing
Nathaniel Xu
Feng Liu
Danica J. Sutherland
BDL
31
0
0
10 Sep 2024
Deep MMD Gradient Flow without adversarial training
Deep MMD Gradient Flow without adversarial training
Alexandre Galashov
Valentin De Bortoli
Arthur Gretton
DiffM
37
7
0
10 May 2024
Stability Analysis Framework for Particle-based Distance GANs with
  Wasserstein Gradient Flow
Stability Analysis Framework for Particle-based Distance GANs with Wasserstein Gradient Flow
Chuqi Chen
Yue Wu
Yang Xiang
GAN
15
0
0
04 Jul 2023
Multi-level Latent Space Structuring for Generative Control
Multi-level Latent Space Structuring for Generative Control
Oren Katzir
Vicky Perepelook
Dani Lischinski
Daniel Cohen-Or
19
4
0
11 Feb 2022
Variational Wasserstein gradient flow
Variational Wasserstein gradient flow
JiaoJiao Fan
Qinsheng Zhang
Amirhossein Taghvaei
Yongxin Chen
72
54
0
04 Dec 2021
The Geometric Occam's Razor Implicit in Deep Learning
The Geometric Occam's Razor Implicit in Deep Learning
Benoit Dherin
Micheal Munn
David Barrett
22
6
0
30 Nov 2021
RoMA: Robust Model Adaptation for Offline Model-based Optimization
RoMA: Robust Model Adaptation for Offline Model-based Optimization
Sihyun Yu
Sungsoo Ahn
Le Song
Jinwoo Shin
OffRL
16
31
0
27 Oct 2021
Adversarially Robust Kernel Smoothing
Adversarially Robust Kernel Smoothing
Jia-Jie Zhu
Christina Kouridi
Yassine Nemmour
Bernhard Schölkopf
21
7
0
16 Feb 2021
A case for new neural network smoothness constraints
A case for new neural network smoothness constraints
Mihaela Rosca
T. Weber
A. Gretton
S. Mohamed
AAML
25
48
0
14 Dec 2020
On the Convergence of Gradient Descent in GANs: MMD GAN As a Gradient
  Flow
On the Convergence of Gradient Descent in GANs: MMD GAN As a Gradient Flow
Youssef Mroueh
Truyen V. Nguyen
26
25
0
04 Nov 2020
Blindness of score-based methods to isolated components and mixing
  proportions
Blindness of score-based methods to isolated components and mixing proportions
Wenliang K. Li
Heishiro Kanagawa
13
34
0
23 Aug 2020
Estimating Barycenters of Measures in High Dimensions
Estimating Barycenters of Measures in High Dimensions
Samuel N. Cohen
Michael Arbel
M. Deisenroth
15
22
0
14 Jul 2020
Learning Deep Kernels for Non-Parametric Two-Sample Tests
Learning Deep Kernels for Non-Parametric Two-Sample Tests
Feng Liu
Wenkai Xu
Jie Lu
Guangquan Zhang
A. Gretton
Danica J. Sutherland
16
176
0
21 Feb 2020
Smoothness and Stability in GANs
Smoothness and Stability in GANs
Casey Chu
Kentaro Minami
Kenji Fukumizu
GAN
21
56
0
11 Feb 2020
A Review on Generative Adversarial Networks: Algorithms, Theory, and
  Applications
A Review on Generative Adversarial Networks: Algorithms, Theory, and Applications
Jie Gui
Zhenan Sun
Yonggang Wen
Dacheng Tao
Jieping Ye
EGVM
26
817
0
20 Jan 2020
On Computation and Generalization of Generative Adversarial Imitation
  Learning
On Computation and Generalization of Generative Adversarial Imitation Learning
Minshuo Chen
Yizhou Wang
Tianyi Liu
Zhuoran Yang
Xingguo Li
Zhaoran Wang
T. Zhao
33
40
0
09 Jan 2020
Statistical Inference for Generative Models with Maximum Mean
  Discrepancy
Statistical Inference for Generative Models with Maximum Mean Discrepancy
François‐Xavier Briol
Alessandro Barp
Andrew B. Duncan
Mark Girolami
21
70
0
13 Jun 2019
Maximum Mean Discrepancy Gradient Flow
Maximum Mean Discrepancy Gradient Flow
Michael Arbel
Anna Korba
Adil Salim
A. Gretton
24
158
0
11 Jun 2019
Learning Implicit Generative Models by Matching Perceptual Features
Learning Implicit Generative Models by Matching Perceptual Features
Cicero Nogueira dos Santos
Youssef Mroueh
Inkit Padhi
Pierre L. Dognin
GAN
23
28
0
04 Apr 2019
High-Fidelity Image Generation With Fewer Labels
High-Fidelity Image Generation With Fewer Labels
Mario Lucic
Michael Tschannen
Marvin Ritter
Xiaohua Zhai
Olivier Bachem
Sylvain Gelly
GAN
OOD
31
157
0
06 Mar 2019
Deep Generative Learning via Variational Gradient Flow
Deep Generative Learning via Variational Gradient Flow
Yuan Gao
Yuling Jiao
Yang Wang
Yao Wang
Can Yang
Shunkang Zhang
19
36
0
24 Jan 2019
Interaction Matters: A Note on Non-asymptotic Local Convergence of
  Generative Adversarial Networks
Interaction Matters: A Note on Non-asymptotic Local Convergence of Generative Adversarial Networks
Tengyuan Liang
J. Stokes
27
211
0
16 Feb 2018
1