ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1805.11565
  4. Cited By
On gradient regularizers for MMD GANs
v1v2v3v4v5 (latest)

On gradient regularizers for MMD GANs

29 May 2018
Michael Arbel
Danica J. Sutherland
Mikolaj Binkowski
Arthur Gretton
ArXiv (abs)PDFHTML

Papers citing "On gradient regularizers for MMD GANs"

50 / 68 papers shown
Title
Adaptive generative moment matching networks for improved learning of dependence structures
Adaptive generative moment matching networks for improved learning of dependence structures
Marius Hofert
Gan Yao
124
0
0
29 Aug 2025
Exploring Image Generation via Mutually Exclusive Probability Spaces and Local Correlation Hypothesis
Exploring Image Generation via Mutually Exclusive Probability Spaces and Local Correlation Hypothesis
Chenqiu Zhao
Anup Basu
194
0
0
26 Jun 2025
Smooth Model Compression without Fine-Tuning
Smooth Model Compression without Fine-Tuning
Christina Runkel
Natacha Kuete Meli
Jovita Lukasik
A. Biguri
Carola-Bibiane Schönlieb
Michael Moeller
185
0
0
30 May 2025
Stationary MMD Points for Cubature
Stationary MMD Points for Cubature
Zonghao Chen
Toni Karvonen
Heishiro Kanagawa
F. Briol
Chris J. Oates
248
1
0
27 May 2025
CKGAN: Training Generative Adversarial Networks Using Characteristic Kernel Integral Probability Metrics
CKGAN: Training Generative Adversarial Networks Using Characteristic Kernel Integral Probability Metrics
Kuntian Zhang
Simin Yu
Yaoshu Wang
Makoto Onizuka
Chuan Xiao
GAN
227
0
0
08 Apr 2025
Optimality and Adaptivity of Deep Neural Features for Instrumental Variable Regression
Optimality and Adaptivity of Deep Neural Features for Instrumental Variable RegressionInternational Conference on Learning Representations (ICLR), 2025
Juno Kim
Dimitri Meunier
Arthur Gretton
Taiji Suzuki
Zhu Li
123
2
0
10 Jan 2025
Learning Representations for Independence Testing
Learning Representations for Independence Testing
Nathaniel Xu
Yifan Zhang
Danica J. Sutherland
BDL
220
0
0
10 Sep 2024
Deep MMD Gradient Flow without adversarial training
Deep MMD Gradient Flow without adversarial training
Alexandre Galashov
Valentin De Bortoli
Arthur Gretton
DiffM
201
10
0
10 May 2024
Hoeffding's Inequality for Markov Chains under Generalized
  Concentrability Condition
Hoeffding's Inequality for Markov Chains under Generalized Concentrability Condition
Hao Chen
Abhishek Gupta
Yin Sun
Ness B. Shroff
156
2
0
04 Oct 2023
Stability Analysis Framework for Particle-based Distance GANs with
  Wasserstein Gradient Flow
Stability Analysis Framework for Particle-based Distance GANs with Wasserstein Gradient Flow
Chuqi Chen
Yue Wu
Yang Xiang
GAN
121
0
0
04 Jul 2023
Data Interpolants -- That's What Discriminators in Higher-order
  Gradient-regularized GANs Are
Data Interpolants -- That's What Discriminators in Higher-order Gradient-regularized GANs Are
Aadithya Srikanth
C. Seelamantula
160
4
0
01 Jun 2023
Differentially Private Neural Tangent Kernels for Privacy-Preserving
  Data Generation
Differentially Private Neural Tangent Kernels for Privacy-Preserving Data Generation
Yilin Yang
Kamil Adamczewski
Danica J. Sutherland
Xiaoxiao Li
Mijung Park
247
14
0
03 Mar 2023
Optimizing DDPM Sampling with Shortcut Fine-Tuning
Optimizing DDPM Sampling with Shortcut Fine-TuningInternational Conference on Machine Learning (ICML), 2023
Ying Fan
Kangwook Lee
447
83
0
31 Jan 2023
Why neural networks find simple solutions: the many regularizers of
  geometric complexity
Why neural networks find simple solutions: the many regularizers of geometric complexityNeural Information Processing Systems (NeurIPS), 2022
Benoit Dherin
Michael Munn
M. Rosca
David Barrett
280
41
0
27 Sep 2022
Evaluating Graph Generative Models with Contrastively Learned Features
Evaluating Graph Generative Models with Contrastively Learned FeaturesNeural Information Processing Systems (NeurIPS), 2022
Hamed Shirzad
Kaveh Hassani
Danica J. Sutherland
175
9
0
13 Jun 2022
Multi-level Latent Space Structuring for Generative Control
Multi-level Latent Space Structuring for Generative Control
Oren Katzir
Vicky Perepelook
Dani Lischinski
Daniel Cohen-Or
259
4
0
11 Feb 2022
Variational Wasserstein gradient flow
Variational Wasserstein gradient flowInternational Conference on Machine Learning (ICML), 2021
JiaoJiao Fan
Qinsheng Zhang
Amirhossein Taghvaei
Yongxin Chen
284
66
0
04 Dec 2021
The Geometric Occam's Razor Implicit in Deep Learning
The Geometric Occam's Razor Implicit in Deep Learning
Benoit Dherin
Micheal Munn
David Barrett
189
7
0
30 Nov 2021
RoMA: Robust Model Adaptation for Offline Model-based Optimization
RoMA: Robust Model Adaptation for Offline Model-based Optimization
Sihyun Yu
SungSoo Ahn
Le Song
Jinwoo Shin
OffRL
219
44
0
27 Oct 2021
Two Sample Testing in High Dimension via Maximum Mean Discrepancy
Two Sample Testing in High Dimension via Maximum Mean Discrepancy
Hanjia Gao
Xiaofeng Shao
190
16
0
30 Sep 2021
Deep Generative Learning via Schrödinger Bridge
Deep Generative Learning via Schrödinger BridgeInternational Conference on Machine Learning (ICML), 2021
Gefei Wang
Yuling Jiao
Qiang Xu
Yang Wang
Can Yang
DiffMOT
222
123
0
19 Jun 2021
KALE Flow: A Relaxed KL Gradient Flow for Probabilities with Disjoint
  Support
KALE Flow: A Relaxed KL Gradient Flow for Probabilities with Disjoint Support
Pierre Glaser
Michael Arbel
Arthur Gretton
205
39
0
16 Jun 2021
Learning High-Dimensional Distributions with Latent Neural Fokker-Planck
  Kernels
Learning High-Dimensional Distributions with Latent Neural Fokker-Planck Kernels
Jiuxiang Gu
Changyou Chen
Jinhui Xu
172
2
0
10 May 2021
Adversarially Robust Kernel Smoothing
Adversarially Robust Kernel SmoothingInternational Conference on Artificial Intelligence and Statistics (AISTATS), 2021
Jia-Jie Zhu
Christina Kouridi
Yassine Nemmour
Bernhard Schölkopf
210
8
0
16 Feb 2021
DuelGAN: A Duel Between Two Discriminators Stabilizes the GAN Training
DuelGAN: A Duel Between Two Discriminators Stabilizes the GAN TrainingEuropean Conference on Computer Vision (ECCV), 2021
Jiaheng Wei
Minghao Liu
Jiahao Luo
Andrew Zhu
James Davis
Yang Liu
GAN
400
15
0
19 Jan 2021
Disentangled Recurrent Wasserstein Autoencoder
Disentangled Recurrent Wasserstein AutoencoderInternational Conference on Learning Representations (ICLR), 2021
Jun Han
Martin Renqiang Min
Ligong Han
Erran L. Li
Xuan Zhang
CoGeSyDaDRL
160
36
0
19 Jan 2021
A case for new neural network smoothness constraints
A case for new neural network smoothness constraints
Mihaela Rosca
T. Weber
Arthur Gretton
S. Mohamed
AAML
291
59
0
14 Dec 2020
Generative Learning With Euler Particle Transport
Generative Learning With Euler Particle Transport
Yuan Gao
Jian Huang
Yuling Jiao
Jin Liu
Xiliang Lu
J. Yang
OT
172
2
0
11 Dec 2020
On the Convergence of Gradient Descent in GANs: MMD GAN As a Gradient
  Flow
On the Convergence of Gradient Descent in GANs: MMD GAN As a Gradient Flow
Youssef Mroueh
Truyen V. Nguyen
176
26
0
04 Nov 2020
Towards Accurate Knowledge Transfer via Target-awareness Representation
  Disentanglement
Towards Accurate Knowledge Transfer via Target-awareness Representation DisentanglementMachine-mediated learning (ML), 2020
Xingjian Li
Di Hu
Xuhong Li
Haoyi Xiong
Zhiquan Ye
Zhipeng Wang
Chengzhong Xu
Dejing Dou
AAML
90
2
0
16 Oct 2020
Learning Manifold Implicitly via Explicit Heat-Kernel Learning
Learning Manifold Implicitly via Explicit Heat-Kernel LearningNeural Information Processing Systems (NeurIPS), 2020
Jiuxiang Gu
Changyou Chen
Jinhui Xu
216
9
0
05 Oct 2020
Unbalanced Sobolev Descent
Unbalanced Sobolev Descent
Youssef Mroueh
Mattia Rigotti
134
18
0
29 Sep 2020
Blindness of score-based methods to isolated components and mixing
  proportions
Blindness of score-based methods to isolated components and mixing proportions
Wenliang K. Li
Heishiro Kanagawa
312
35
0
23 Aug 2020
Estimating Barycenters of Measures in High Dimensions
Estimating Barycenters of Measures in High Dimensions
Samuel N. Cohen
Michael Arbel
M. Deisenroth
306
25
0
14 Jul 2020
Sliced Kernelized Stein Discrepancy
Sliced Kernelized Stein Discrepancy
Wenbo Gong
Yingzhen Li
José Miguel Hernández-Lobato
236
38
0
30 Jun 2020
COT-GAN: Generating Sequential Data via Causal Optimal Transport
COT-GAN: Generating Sequential Data via Causal Optimal Transport
Tianlin Xu
L. Wenliang
Michael Munn
Beatrice Acciaio
GANCML
155
121
0
15 Jun 2020
Distributional Robustness with IPMs and links to Regularization and GANs
Distributional Robustness with IPMs and links to Regularization and GANs
Hisham Husain
146
22
0
08 Jun 2020
Deep Attentive Generative Adversarial Network for Photo-Realistic Image
  De-Quantization
Deep Attentive Generative Adversarial Network for Photo-Realistic Image De-Quantization
Yang Zhang
Changhui Hu
Xiaobo Lu
GAN
112
1
0
07 Apr 2020
Synchronizing Probability Measures on Rotations via Optimal Transport
Synchronizing Probability Measures on Rotations via Optimal TransportComputer Vision and Pattern Recognition (CVPR), 2020
Tolga Birdal
Michael Arbel
Umut Simsekli
Leonidas Guibas
OT
140
31
0
01 Apr 2020
Generalized Energy Based Models
Generalized Energy Based ModelsInternational Conference on Learning Representations (ICLR), 2020
Michael Arbel
Liang Zhou
Arthur Gretton
DRL
412
90
0
10 Mar 2020
ICE-BeeM: Identifiable Conditional Energy-Based Deep Models Based on
  Nonlinear ICA
ICE-BeeM: Identifiable Conditional Energy-Based Deep Models Based on Nonlinear ICANeural Information Processing Systems (NeurIPS), 2020
Ilyes Khemakhem
R. Monti
Diederik P. Kingma
Aapo Hyvarinen
CML
304
129
0
26 Feb 2020
Amortised Learning by Wake-Sleep
Amortised Learning by Wake-SleepInternational Conference on Machine Learning (ICML), 2020
W. Li
Theodore H. Moskovitz
Heishiro Kanagawa
M. Sahani
OOD
275
7
0
22 Feb 2020
Learning Deep Kernels for Non-Parametric Two-Sample Tests
Learning Deep Kernels for Non-Parametric Two-Sample TestsInternational Conference on Machine Learning (ICML), 2020
Yifan Zhang
Wenkai Xu
Jie Lu
Guangquan Zhang
Arthur Gretton
Danica J. Sutherland
264
205
0
21 Feb 2020
Generalised Lipschitz Regularisation Equals Distributional Robustness
Generalised Lipschitz Regularisation Equals Distributional RobustnessInternational Conference on Machine Learning (ICML), 2020
Zac Cranko
Zhan Shi
Xinhua Zhang
Richard Nock
Simon Kornblith
OOD
159
23
0
11 Feb 2020
Smoothness and Stability in GANs
Smoothness and Stability in GANsInternational Conference on Learning Representations (ICLR), 2020
Casey Chu
Kentaro Minami
Kenji Fukumizu
GAN
155
60
0
11 Feb 2020
Learning Implicit Generative Models with Theoretical Guarantees
Learning Implicit Generative Models with Theoretical Guarantees
Yuan Gao
Jian Huang
Yuling Jiao
Jin Liu
154
7
0
07 Feb 2020
A Review on Generative Adversarial Networks: Algorithms, Theory, and
  Applications
A Review on Generative Adversarial Networks: Algorithms, Theory, and ApplicationsIEEE Transactions on Knowledge and Data Engineering (TKDE), 2020
Jie Gui
Zhenan Sun
Yonggang Wen
Dacheng Tao
Jieping Ye
EGVM
262
1,002
0
20 Jan 2020
On Computation and Generalization of Generative Adversarial Imitation
  Learning
On Computation and Generalization of Generative Adversarial Imitation LearningInternational Conference on Learning Representations (ICLR), 2020
Minshuo Chen
Yizhou Wang
Tianyi Liu
Zhuoran Yang
Xingguo Li
Zhaoran Wang
T. Zhao
245
41
0
09 Jan 2020
KernelNet: A Data-Dependent Kernel Parameterization for Deep Generative
  Modeling
KernelNet: A Data-Dependent Kernel Parameterization for Deep Generative Modeling
Jiuxiang Gu
Changyou Chen
Jinhui Xu
240
2
0
02 Dec 2019
Double cycle-consistent generative adversarial network for unsupervised
  conditional generation
Double cycle-consistent generative adversarial network for unsupervised conditional generationInternational Conference on Information Photonics (ICIP), 2019
Fei Ding
Feng Luo
Yin Yang
SyDaAI4CE
108
10
0
13 Nov 2019
12
Next