Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
1806.07366
Cited By
v1
v2
v3
v4
v5 (latest)
Neural Ordinary Differential Equations
19 June 2018
T. Chen
Yulia Rubanova
J. Bettencourt
David Duvenaud
AI4CE
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Neural Ordinary Differential Equations"
50 / 3,220 papers shown
Interpolation Technique to Speed Up Gradients Propagation in Neural ODEs
Talgat Daulbaev
A. Katrutsa
L. Markeeva
Julia Gusak
A. Cichocki
Ivan Oseledets
151
8
0
11 Mar 2020
Integrating Scientific Knowledge with Machine Learning for Engineering and Environmental Systems
ACM Computing Surveys (ACM CSUR), 2020
J. Willard
X. Jia
Shaoming Xu
M. Steinbach
Vipin Kumar
AI4CE
684
540
0
10 Mar 2020
Lagrangian Neural Networks
International Conference on Learning Representations (ICLR), 2020
M. Cranmer
S. Greydanus
Stephan Hoyer
Peter W. Battaglia
D. Spergel
S. Ho
PINN
540
513
0
10 Mar 2020
Variational Learning of Individual Survival Distributions
ACM Conference on Health, Inference, and Learning (CHIL), 2020
Zidi Xiu
Chenyang Tao
Benjamin A. Goldstein
Ricardo Henao
OOD
184
17
0
09 Mar 2020
Progressive Growing of Neural ODEs
International Conference on Learning Representations (ICLR), 2020
Hammad A. Ayyubi
Yi Yao
Ajay Divakaran
AI4TS
67
2
0
08 Mar 2020
Convergence of Q-value in case of Gaussian rewards
Konatsu Miyamoto
Masaya Suzuki
Yuma Kigami
Kodai Satake
102
1
0
07 Mar 2020
TIME: A Transparent, Interpretable, Model-Adaptive and Explainable Neural Network for Dynamic Physical Processes
Gurpreet Singh
Soumyajit Gupta
Matt Lease
Clint Dawson
AI4TS
AI4CE
98
2
0
05 Mar 2020
Methods to Recover Unknown Processes in Partial Differential Equations Using Data
Journal of Scientific Computing (J. Sci. Comput.), 2020
Zhen Chen
Kailiang Wu
D. Xiu
109
3
0
05 Mar 2020
Bayesian System ID: Optimal management of parameter, model, and measurement uncertainty
Nonlinear dynamics (Nonlinear Dyn.), 2020
Nicholas Galioto
Alex Gorodetsky
146
37
0
04 Mar 2020
Forecasting Sequential Data using Consistent Koopman Autoencoders
International Conference on Machine Learning (ICML), 2020
Omri Azencot
N. Benjamin Erichson
Vanessa Lin
Michael W. Mahoney
AI4TS
AI4CE
501
186
0
04 Mar 2020
Gaussianization Flows
International Conference on Artificial Intelligence and Statistics (AISTATS), 2020
Chenlin Meng
Yang Song
Jiaming Song
Stefano Ermon
153
35
0
04 Mar 2020
Disentangling Physical Dynamics from Unknown Factors for Unsupervised Video Prediction
Computer Vision and Pattern Recognition (CVPR), 2020
Vincent Le Guen
Nicolas Thome
AI4CE
PINN
395
357
0
03 Mar 2020
Sparsity Meets Robustness: Channel Pruning for the Feynman-Kac Formalism Principled Robust Deep Neural Nets
International Conference on Machine Learning, Optimization, and Data Science (MOD), 2020
Thu Dinh
Bao Wang
Andrea L. Bertozzi
Stanley J. Osher
AAML
134
19
0
02 Mar 2020
Differentiating through the Fréchet Mean
International Conference on Machine Learning (ICML), 2020
Aaron Lou
Isay Katsman
Qingxuan Jiang
Serge J. Belongie
Ser-Nam Lim
Christopher De Sa
DRL
322
77
0
29 Feb 2020
Learning Multivariate Hawkes Processes at Scale
Maximilian Nickel
Matt Le
169
17
0
28 Feb 2020
Woodbury Transformations for Deep Generative Flows
Neural Information Processing Systems (NeurIPS), 2020
You Lu
Bert Huang
203
18
0
27 Feb 2020
Differentiable Molecular Simulations for Control and Learning
Wujie Wang
Simon Axelrod
Rafael Gómez-Bombarelli
AI4CE
352
51
0
27 Feb 2020
ResNets, NeuralODEs and CT-RNNs are Particular Neural Regulatory Networks
Radu Grosu
64
1
0
26 Feb 2020
Generalizing Convolutional Neural Networks for Equivariance to Lie Groups on Arbitrary Continuous Data
International Conference on Machine Learning (ICML), 2020
Marc Finzi
Samuel Stanton
Pavel Izmailov
A. Wilson
409
360
0
25 Feb 2020
Learning Queuing Networks by Recurrent Neural Networks
International Conference on Performance Engineering (ICPE), 2020
G. Garbi
Emilio Incerto
M. Tribastone
92
18
0
25 Feb 2020
Modeling Continuous Stochastic Processes with Dynamic Normalizing Flows
Neural Information Processing Systems (NeurIPS), 2020
Ruizhi Deng
B. Chang
Marcus A. Brubaker
Greg Mori
Andreas M. Lehrmann
307
58
0
24 Feb 2020
Alternating the Population and Control Neural Networks to Solve High-Dimensional Stochastic Mean-Field Games
Proceedings of the National Academy of Sciences of the United States of America (PNAS), 2020
A. Lin
Samy Wu Fung
Wuchen Li
L. Nurbekyan
Stanley J. Osher
305
92
0
24 Feb 2020
Triple Wins: Boosting Accuracy, Robustness and Efficiency Together by Enabling Input-Adaptive Inference
International Conference on Learning Representations (ICLR), 2020
Ting-Kuei Hu
Tianlong Chen
Haotao Wang
Zinan Lin
OOD
AAML
3DH
351
88
0
24 Feb 2020
Stochasticity in Neural ODEs: An Empirical Study
International Conference on Learning Representations (ICLR), 2020
V. Oganesyan
Alexandra Volokhova
Dmitry Vetrov
BDL
198
21
0
22 Feb 2020
VFlow: More Expressive Generative Flows with Variational Data Augmentation
International Conference on Machine Learning (ICML), 2020
Jianfei Chen
Cheng Lu
Biqi Chenli
Jun Zhu
Tian Tian
DRL
199
62
0
22 Feb 2020
Stochastic Normalizing Flows
Liam Hodgkinson
Christopher van der Heide
Fred Roosta
Michael W. Mahoney
BDL
135
1
0
21 Feb 2020
Differentiable Likelihoods for Fast Inversion of 'Likelihood-Free' Dynamical Systems
International Conference on Machine Learning (ICML), 2020
Hans Kersting
N. Krämer
Martin Schiegg
Christian Daniel
Michael Tiemann
Philipp Hennig
202
22
0
21 Feb 2020
Stochastic Latent Residual Video Prediction
International Conference on Machine Learning (ICML), 2020
Jean-Yves Franceschi
E. Delasalles
Mickaël Chen
Sylvain Lamprier
Patrick Gallinari
VGen
410
163
0
21 Feb 2020
Dissipative SymODEN: Encoding Hamiltonian Dynamics with Dissipation and Control into Deep Learning
Yaofeng Desmond Zhong
Biswadip Dey
Amit Chakraborty
PINN
AI4CE
321
87
0
20 Feb 2020
DDPNOpt: Differential Dynamic Programming Neural Optimizer
International Conference on Learning Representations (ICLR), 2020
Guan-Horng Liu
T. Chen
Evangelos A. Theodorou
280
7
0
20 Feb 2020
Dissecting Neural ODEs
Neural Information Processing Systems (NeurIPS), 2020
Stefano Massaroli
Michael Poli
Jinkyoo Park
Atsushi Yamashita
Hajime Asama
263
237
0
19 Feb 2020
Augmented Normalizing Flows: Bridging the Gap Between Generative Flows and Latent Variable Models
Chin-Wei Huang
Laurent Dinh
Aaron Courville
DRL
306
93
0
17 Feb 2020
Learning Group Structure and Disentangled Representations of Dynamical Environments
Robin Quessard
Thomas D. Barrett
W. Clements
DRL
173
22
0
17 Feb 2020
Stochastic Normalizing Flows
Neural Information Processing Systems (NeurIPS), 2020
Hao Wu
Jonas Köhler
Frank Noé
529
212
0
16 Feb 2020
Hypernetwork approach to generating point clouds
International Conference on Machine Learning (ICML), 2020
Przemysław Spurek
Sebastian Winczowski
Jacek Tabor
M. Zamorski
Maciej Ziȩba
Tomasz Trzciñski
3DPC
201
35
0
10 Feb 2020
TrajectoryNet: A Dynamic Optimal Transport Network for Modeling Cellular Dynamics
International Conference on Machine Learning (ICML), 2020
Alexander Tong
Jessie Huang
Guy Wolf
David van Dijk
Smita Krishnaswamy
225
233
0
09 Feb 2020
Incorporating Symmetry into Deep Dynamics Models for Improved Generalization
International Conference on Learning Representations (ICLR), 2020
Rui Wang
Robin Walters
Rose Yu
AI4CE
532
198
0
08 Feb 2020
Learning Implicit Generative Models with Theoretical Guarantees
Yuan Gao
Jian Huang
Yuling Jiao
Jin Liu
209
7
0
07 Feb 2020
How to train your neural ODE: the world of Jacobian and kinetic regularization
International Conference on Machine Learning (ICML), 2020
Chris Finlay
J. Jacobsen
L. Nurbekyan
Adam M. Oberman
397
329
0
07 Feb 2020
Linearly Constrained Neural Networks
J. Hendriks
Carl Jidling
A. Wills
Thomas B. Schon
504
38
0
05 Feb 2020
Automatic structured variational inference
International Conference on Artificial Intelligence and Statistics (AISTATS), 2020
Luca Ambrogioni
Kate Lin
Emily Fertig
Sharad Vikram
Max Hinne
Dave Moore
Marcel van Gerven
BDL
282
31
0
03 Feb 2020
AdvectiveNet: An Eulerian-Lagrangian Fluidic reservoir for Point Cloud Processing
International Conference on Learning Representations (ICLR), 2020
Xingzhe He
Helen Lu Cao
Bo Zhu
3DPC
135
10
0
01 Feb 2020
PDE-based Group Equivariant Convolutional Neural Networks
Journal of Mathematical Imaging and Vision (JMIV), 2020
B. Smets
J. Portegies
Erik J. Bekkers
R. Duits
AI4CE
566
63
0
24 Jan 2020
Automatic Differentiation and Continuous Sensitivity Analysis of Rigid Body Dynamics
IEEE International Conference on Robotics and Automation (ICRA), 2020
David Millard
Eric Heiden
Shubham Agrawal
Gaurav Sukhatme
AI4CE
148
16
0
22 Jan 2020
Learning to Control PDEs with Differentiable Physics
International Conference on Learning Representations (ICLR), 2020
Philipp Holl
V. Koltun
Nils Thuerey
AI4CE
PINN
265
208
0
21 Jan 2020
Transfer Learning using Neural Ordinary Differential Equations
S. Rajath
Sumukh Aithal K
Natarajan Subramanyam
89
1
0
21 Jan 2020
Invertible Generative Modeling using Linear Rational Splines
International Conference on Artificial Intelligence and Statistics (AISTATS), 2020
H. M. Dolatabadi
S. Erfani
C. Leckie
385
67
0
15 Jan 2020
NODIS: Neural Ordinary Differential Scene Understanding
European Conference on Computer Vision (ECCV), 2020
Cong Yuren
H. Ackermann
Wentong Liao
M. Yang
Bodo Rosenhahn
364
17
0
14 Jan 2020
Universal Differential Equations for Scientific Machine Learning
Christopher Rackauckas
Yingbo Ma
Julius Martensen
Collin Warner
K. Zubov
R. Supekar
Dominic J. Skinner
Ali Ramadhan
Alan Edelman
AI4CE
450
709
0
13 Jan 2020
Intelligence, physics and information -- the tradeoff between accuracy and simplicity in machine learning
Tailin Wu
336
2
0
11 Jan 2020
Previous
1
2
3
...
59
60
61
...
63
64
65
Next
Page 60 of 65
Page
of 65
Go