Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1901.01375
Cited By
Analysis of a Two-Layer Neural Network via Displacement Convexity
5 January 2019
Adel Javanmard
Marco Mondelli
Andrea Montanari
MLT
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Analysis of a Two-Layer Neural Network via Displacement Convexity"
47 / 47 papers shown
Title
Information-theoretic reduction of deep neural networks to linear models in the overparametrized proportional regime
Francesco Camilli
D. Tieplova
Eleonora Bergamin
Jean Barbier
97
0
0
06 May 2025
Kernel Approximation of Fisher-Rao Gradient Flows
Jia Jie Zhu
Alexander Mielke
44
5
0
27 Oct 2024
Partially Observed Trajectory Inference using Optimal Transport and a Dynamics Prior
Anming Gu
Edward Chien
Kristjan Greenewald
44
4
0
11 Jun 2024
Understanding the training of infinitely deep and wide ResNets with Conditional Optimal Transport
Raphael Barboni
Gabriel Peyré
Franccois-Xavier Vialard
32
3
0
19 Mar 2024
Towards Understanding the Word Sensitivity of Attention Layers: A Study via Random Features
Simone Bombari
Marco Mondelli
31
3
0
05 Feb 2024
Fundamental limits of overparametrized shallow neural networks for supervised learning
Francesco Camilli
D. Tieplova
Jean Barbier
22
9
0
11 Jul 2023
Convergence of mean-field Langevin dynamics: Time and space discretization, stochastic gradient, and variance reduction
Taiji Suzuki
Denny Wu
Atsushi Nitanda
27
16
0
12 Jun 2023
Doubly Regularized Entropic Wasserstein Barycenters
Lénaïc Chizat
13
11
0
21 Mar 2023
Generalization and Stability of Interpolating Neural Networks with Minimal Width
Hossein Taheri
Christos Thrampoulidis
24
15
0
18 Feb 2023
Stochastic Modified Flows, Mean-Field Limits and Dynamics of Stochastic Gradient Descent
Benjamin Gess
Sebastian Kassing
Vitalii Konarovskyi
DiffM
24
6
0
14 Feb 2023
Efficient displacement convex optimization with particle gradient descent
Hadi Daneshmand
J. Lee
Chi Jin
21
5
0
09 Feb 2023
Birth-death dynamics for sampling: Global convergence, approximations and their asymptotics
Yulong Lu
D. Slepčev
Lihan Wang
32
22
0
01 Nov 2022
A Functional-Space Mean-Field Theory of Partially-Trained Three-Layer Neural Networks
Zhengdao Chen
Eric Vanden-Eijnden
Joan Bruna
MLT
10
5
0
28 Oct 2022
Mean-field analysis for heavy ball methods: Dropout-stability, connectivity, and global convergence
Diyuan Wu
Vyacheslav Kungurtsev
Marco Mondelli
15
3
0
13 Oct 2022
Neural Networks can Learn Representations with Gradient Descent
Alexandru Damian
Jason D. Lee
Mahdi Soltanolkotabi
SSL
MLT
17
112
0
30 Jun 2022
Sharp asymptotics on the compression of two-layer neural networks
Mohammad Hossein Amani
Simone Bombari
Marco Mondelli
Rattana Pukdee
Stefano Rini
MLT
17
0
0
17 May 2022
Trajectory Inference via Mean-field Langevin in Path Space
Lénaïc Chizat
Stephen X. Zhang
Matthieu Heitz
Geoffrey Schiebinger
20
20
0
14 May 2022
On Feature Learning in Neural Networks with Global Convergence Guarantees
Zhengdao Chen
Eric Vanden-Eijnden
Joan Bruna
MLT
20
12
0
22 Apr 2022
A blob method for inhomogeneous diffusion with applications to multi-agent control and sampling
Katy Craig
Karthik Elamvazhuthi
M. Haberland
O. Turanova
25
15
0
25 Feb 2022
Convex Analysis of the Mean Field Langevin Dynamics
Atsushi Nitanda
Denny Wu
Taiji Suzuki
MLT
59
64
0
25 Jan 2022
Wasserstein Flow Meets Replicator Dynamics: A Mean-Field Analysis of Representation Learning in Actor-Critic
Yufeng Zhang
Siyu Chen
Zhuoran Yang
Michael I. Jordan
Zhaoran Wang
58
4
0
27 Dec 2021
Global convergence of ResNets: From finite to infinite width using linear parameterization
Raphael Barboni
Gabriel Peyré
Franccois-Xavier Vialard
11
12
0
10 Dec 2021
Mean-field Analysis of Piecewise Linear Solutions for Wide ReLU Networks
A. Shevchenko
Vyacheslav Kungurtsev
Marco Mondelli
MLT
30
13
0
03 Nov 2021
Limiting fluctuation and trajectorial stability of multilayer neural networks with mean field training
H. Pham
Phan-Minh Nguyen
6
6
0
29 Oct 2021
Convergence rates for shallow neural networks learned by gradient descent
Alina Braun
Michael Kohler
S. Langer
Harro Walk
20
10
0
20 Jul 2021
Small random initialization is akin to spectral learning: Optimization and generalization guarantees for overparameterized low-rank matrix reconstruction
Dominik Stöger
Mahdi Soltanolkotabi
ODL
31
74
0
28 Jun 2021
Stochastic gradient descent with noise of machine learning type. Part II: Continuous time analysis
Stephan Wojtowytsch
23
33
0
04 Jun 2021
Global Convergence of Three-layer Neural Networks in the Mean Field Regime
H. Pham
Phan-Minh Nguyen
MLT
AI4CE
38
19
0
11 May 2021
Particle Dual Averaging: Optimization of Mean Field Neural Networks with Global Convergence Rate Analysis
Atsushi Nitanda
Denny Wu
Taiji Suzuki
6
29
0
31 Dec 2020
Dataset Dynamics via Gradient Flows in Probability Space
David Alvarez-Melis
Nicolò Fusi
13
18
0
24 Oct 2020
Global optimality of softmax policy gradient with single hidden layer neural networks in the mean-field regime
Andrea Agazzi
Jianfeng Lu
13
15
0
22 Oct 2020
Towards a Mathematical Understanding of Neural Network-Based Machine Learning: what we know and what we don't
E. Weinan
Chao Ma
Stephan Wojtowytsch
Lei Wu
AI4CE
6
133
0
22 Sep 2020
Quantitative Propagation of Chaos for SGD in Wide Neural Networks
Valentin De Bortoli
Alain Durmus
Xavier Fontaine
Umut Simsekli
16
25
0
13 Jul 2020
On the Empirical Neural Tangent Kernel of Standard Finite-Width Convolutional Neural Network Architectures
M. Samarin
Volker Roth
David Belius
6
3
0
24 Jun 2020
A Mean-Field Theory for Learning the Schönberg Measure of Radial Basis Functions
M. B. Khuzani
Yinyu Ye
S. Napel
Lei Xing
11
1
0
23 Jun 2020
Can Temporal-Difference and Q-Learning Learn Representation? A Mean-Field Theory
Yufeng Zhang
Qi Cai
Zhuoran Yang
Yongxin Chen
Zhaoran Wang
OOD
MLT
58
11
0
08 Jun 2020
Consensus-Based Optimization on the Sphere: Convergence to Global Minimizers and Machine Learning
M. Fornasier
Hui Huang
L. Pareschi
Philippe Sünnen
6
67
0
31 Jan 2020
A Rigorous Framework for the Mean Field Limit of Multilayer Neural Networks
Phan-Minh Nguyen
H. Pham
AI4CE
11
81
0
30 Jan 2020
Avoiding Spurious Local Minima in Deep Quadratic Networks
A. Kazemipour
Brett W. Larsen
S. Druckmann
ODL
11
6
0
31 Dec 2019
Landscape Connectivity and Dropout Stability of SGD Solutions for Over-parameterized Neural Networks
A. Shevchenko
Marco Mondelli
19
37
0
20 Dec 2019
A Mean-Field Theory for Kernel Alignment with Random Features in Generative and Discriminative Models
M. B. Khuzani
Liyue Shen
Shahin Shahrampour
Lei Xing
16
1
0
25 Sep 2019
The generalization error of random features regression: Precise asymptotics and double descent curve
Song Mei
Andrea Montanari
39
624
0
14 Aug 2019
Sparse Optimization on Measures with Over-parameterized Gradient Descent
Lénaïc Chizat
13
92
0
24 Jul 2019
Mean-Field Langevin Dynamics and Energy Landscape of Neural Networks
Kaitong Hu
Zhenjie Ren
David Siska
Lukasz Szpruch
MLT
17
104
0
19 May 2019
A Selective Overview of Deep Learning
Jianqing Fan
Cong Ma
Yiqiao Zhong
BDL
VLM
25
136
0
10 Apr 2019
Mean-field theory of two-layers neural networks: dimension-free bounds and kernel limit
Song Mei
Theodor Misiakiewicz
Andrea Montanari
MLT
11
275
0
16 Feb 2019
Mean Field Limit of the Learning Dynamics of Multilayer Neural Networks
Phan-Minh Nguyen
AI4CE
14
72
0
07 Feb 2019
1