ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1902.02476
  4. Cited By
A Simple Baseline for Bayesian Uncertainty in Deep Learning

A Simple Baseline for Bayesian Uncertainty in Deep Learning

7 February 2019
Wesley J. Maddox
T. Garipov
Pavel Izmailov
Dmitry Vetrov
A. Wilson
    BDL
    UQCV
ArXivPDFHTML

Papers citing "A Simple Baseline for Bayesian Uncertainty in Deep Learning"

50 / 189 papers shown
Title
Failure Detection for Motion Prediction of Autonomous Driving: An
  Uncertainty Perspective
Failure Detection for Motion Prediction of Autonomous Driving: An Uncertainty Perspective
Wenbo Shao
Yan Xu
Liang Peng
Jun Li
Hong Wang
29
15
0
11 Jan 2023
Do Bayesian Variational Autoencoders Know What They Don't Know?
Do Bayesian Variational Autoencoders Know What They Don't Know?
Misha Glazunov
Apostolis Zarras
UQCV
BDL
25
5
0
29 Dec 2022
Bayesian posterior approximation with stochastic ensembles
Bayesian posterior approximation with stochastic ensembles
Oleksandr Balabanov
Bernhard Mehlig
H. Linander
BDL
UQCV
27
5
0
15 Dec 2022
Investigating Deep Learning Model Calibration for Classification
  Problems in Mechanics
Investigating Deep Learning Model Calibration for Classification Problems in Mechanics
S. Mohammadzadeh
Peerasait Prachaseree
Emma Lejeune
AI4CE
34
2
0
01 Dec 2022
Are you using test log-likelihood correctly?
Are you using test log-likelihood correctly?
Sameer K. Deshpande
Soumya K. Ghosh
Tin D. Nguyen
Tamara Broderick
27
7
0
01 Dec 2022
Layer-Stack Temperature Scaling
Layer-Stack Temperature Scaling
Amr Khalifa
Michael C. Mozer
Hanie Sedghi
Behnam Neyshabur
Ibrahim M. Alabdulmohsin
78
2
0
18 Nov 2022
Do Bayesian Neural Networks Need To Be Fully Stochastic?
Do Bayesian Neural Networks Need To Be Fully Stochastic?
Mrinank Sharma
Sebastian Farquhar
Eric T. Nalisnick
Tom Rainforth
BDL
18
52
0
11 Nov 2022
Quantifying Model Uncertainty for Semantic Segmentation using Operators
  in the RKHS
Quantifying Model Uncertainty for Semantic Segmentation using Operators in the RKHS
Rishabh Singh
José C. Príncipe
UQCV
28
3
0
03 Nov 2022
Federated Averaging Langevin Dynamics: Toward a unified theory and new
  algorithms
Federated Averaging Langevin Dynamics: Toward a unified theory and new algorithms
Vincent Plassier
Alain Durmus
Eric Moulines
FedML
14
6
0
31 Oct 2022
On the optimization and pruning for Bayesian deep learning
On the optimization and pruning for Bayesian deep learning
X. Ke
Yanan Fan
BDL
UQCV
27
1
0
24 Oct 2022
Accelerated Linearized Laplace Approximation for Bayesian Deep Learning
Accelerated Linearized Laplace Approximation for Bayesian Deep Learning
Zhijie Deng
Feng Zhou
Jun Zhu
BDL
47
19
0
23 Oct 2022
Packed-Ensembles for Efficient Uncertainty Estimation
Packed-Ensembles for Efficient Uncertainty Estimation
Olivier Laurent
Adrien Lafage
Enzo Tartaglione
Geoffrey Daniel
Jean-Marc Martinez
Andrei Bursuc
Gianni Franchi
OODD
44
32
0
17 Oct 2022
JuryGCN: Quantifying Jackknife Uncertainty on Graph Convolutional
  Networks
JuryGCN: Quantifying Jackknife Uncertainty on Graph Convolutional Networks
Jian Kang
Qinghai Zhou
Hanghang Tong
UQCV
30
21
0
12 Oct 2022
Accurate, reliable and interpretable solubility prediction of druglike
  molecules with attention pooling and Bayesian learning
Accurate, reliable and interpretable solubility prediction of druglike molecules with attention pooling and Bayesian learning
Seongok Ryu
Sumin Lee
16
5
0
29 Sep 2022
Bayesian Neural Network Versus Ex-Post Calibration For Prediction
  Uncertainty
Bayesian Neural Network Versus Ex-Post Calibration For Prediction Uncertainty
Satya Borgohain
Klaus Ackermann
Rubén Loaiza-Maya
BDL
UQCV
13
0
0
29 Sep 2022
UMIX: Improving Importance Weighting for Subpopulation Shift via
  Uncertainty-Aware Mixup
UMIX: Improving Importance Weighting for Subpopulation Shift via Uncertainty-Aware Mixup
Zongbo Han
Zhipeng Liang
Fan Yang
Liu Liu
Lanqing Li
Yatao Bian
P. Zhao
Bing Wu
Changqing Zhang
Jianhua Yao
53
34
0
19 Sep 2022
Sample-based Uncertainty Quantification with a Single Deterministic
  Neural Network
Sample-based Uncertainty Quantification with a Single Deterministic Neural Network
T. Kanazawa
Chetan Gupta
UQCV
30
4
0
17 Sep 2022
Git Re-Basin: Merging Models modulo Permutation Symmetries
Git Re-Basin: Merging Models modulo Permutation Symmetries
Samuel K. Ainsworth
J. Hayase
S. Srinivasa
MoMe
252
314
0
11 Sep 2022
Investigating the Impact of Model Misspecification in Neural
  Simulation-based Inference
Investigating the Impact of Model Misspecification in Neural Simulation-based Inference
Patrick W Cannon
Daniel Ward
Sebastian M. Schmon
22
34
0
05 Sep 2022
CUAHN-VIO: Content-and-Uncertainty-Aware Homography Network for
  Visual-Inertial Odometry
CUAHN-VIO: Content-and-Uncertainty-Aware Homography Network for Visual-Inertial Odometry
Ying Xu
Guido de Croon
BDL
33
5
0
30 Aug 2022
OpenCon: Open-world Contrastive Learning
OpenCon: Open-world Contrastive Learning
Yiyou Sun
Yixuan Li
VLM
SSL
DRL
44
39
0
04 Aug 2022
Success of Uncertainty-Aware Deep Models Depends on Data Manifold
  Geometry
Success of Uncertainty-Aware Deep Models Depends on Data Manifold Geometry
M. Penrod
Harrison Termotto
Varshini Reddy
Jiayu Yao
Finale Doshi-Velez
Weiwei Pan
AAML
OOD
37
1
0
02 Aug 2022
Approximate Bayesian Neural Operators: Uncertainty Quantification for
  Parametric PDEs
Approximate Bayesian Neural Operators: Uncertainty Quantification for Parametric PDEs
Emilia Magnani
Nicholas Kramer
Runa Eschenhagen
Lorenzo Rosasco
Philipp Hennig
UQCV
BDL
13
9
0
02 Aug 2022
LGV: Boosting Adversarial Example Transferability from Large Geometric
  Vicinity
LGV: Boosting Adversarial Example Transferability from Large Geometric Vicinity
Martin Gubri
Maxime Cordy
Mike Papadakis
Yves Le Traon
Koushik Sen
AAML
27
51
0
26 Jul 2022
Assaying Out-Of-Distribution Generalization in Transfer Learning
Assaying Out-Of-Distribution Generalization in Transfer Learning
F. Wenzel
Andrea Dittadi
Peter V. Gehler
Carl-Johann Simon-Gabriel
Max Horn
...
Chris Russell
Thomas Brox
Bernt Schiele
Bernhard Schölkopf
Francesco Locatello
OOD
OODD
AAML
54
71
0
19 Jul 2022
Instance-Aware Observer Network for Out-of-Distribution Object
  Segmentation
Instance-Aware Observer Network for Out-of-Distribution Object Segmentation
Victor Besnier
Andrei Bursuc
David Picard
Alexandre Briot
39
1
0
18 Jul 2022
BayesCap: Bayesian Identity Cap for Calibrated Uncertainty in Frozen
  Neural Networks
BayesCap: Bayesian Identity Cap for Calibrated Uncertainty in Frozen Neural Networks
Uddeshya Upadhyay
Shyamgopal Karthik
Yanbei Chen
Massimiliano Mancini
Zeynep Akata
UQCV
BDL
32
22
0
14 Jul 2022
Uncertainty-Aware Learning Against Label Noise on Imbalanced Datasets
Uncertainty-Aware Learning Against Label Noise on Imbalanced Datasets
Yingsong Huang
Bing Bai
Shengwei Zhao
Kun Bai
Fei-Yue Wang
NoLa
23
43
0
12 Jul 2022
Laplacian Autoencoders for Learning Stochastic Representations
Laplacian Autoencoders for Learning Stochastic Representations
M. Miani
Frederik Warburg
Pablo Moreno-Muñoz
Nicke Skafte Detlefsen
Søren Hauberg
UQCV
BDL
SSL
30
10
0
30 Jun 2022
SLOVA: Uncertainty Estimation Using Single Label One-Vs-All Classifier
SLOVA: Uncertainty Estimation Using Single Label One-Vs-All Classifier
Bartosz Wójcik
J. Grela
Marek Śmieja
Krzysztof Misztal
Jacek Tabor
UQCV
33
4
0
28 Jun 2022
Uncertainty-aware Evaluation of Time-Series Classification for Online
  Handwriting Recognition with Domain Shift
Uncertainty-aware Evaluation of Time-Series Classification for Online Handwriting Recognition with Domain Shift
Andreas Klass
Sven M. Lorenz
M. Lauer-Schmaltz
David Rügamer
Bernd Bischl
Christopher Mutschler
Felix Ott
29
10
0
17 Jun 2022
Personalized Federated Learning via Variational Bayesian Inference
Personalized Federated Learning via Variational Bayesian Inference
Xu Zhang
Yinchuan Li
Wenpeng Li
Kaiyang Guo
Yunfeng Shao
FedML
43
85
0
16 Jun 2022
Wide Bayesian neural networks have a simple weight posterior: theory and
  accelerated sampling
Wide Bayesian neural networks have a simple weight posterior: theory and accelerated sampling
Jiri Hron
Roman Novak
Jeffrey Pennington
Jascha Narain Sohl-Dickstein
UQCV
BDL
42
6
0
15 Jun 2022
Which models are innately best at uncertainty estimation?
Which models are innately best at uncertainty estimation?
Ido Galil
Mohammed Dabbah
Ran El-Yaniv
UQCV
34
5
0
05 Jun 2022
LiDAR-MIMO: Efficient Uncertainty Estimation for LiDAR-based 3D Object
  Detection
LiDAR-MIMO: Efficient Uncertainty Estimation for LiDAR-based 3D Object Detection
Matthew A. Pitropov
Chengjie Huang
Vahdat Abdelzad
Krzysztof Czarnecki
Steven Waslander
3DPC
19
3
0
01 Jun 2022
Going Beyond One-Hot Encoding in Classification: Can Human Uncertainty
  Improve Model Performance?
Going Beyond One-Hot Encoding in Classification: Can Human Uncertainty Improve Model Performance?
Christoph Koller
Goran Kauermann
Xiao Xiang Zhu
UQCV
18
6
0
30 May 2022
Split personalities in Bayesian Neural Networks: the case for full
  marginalisation
Split personalities in Bayesian Neural Networks: the case for full marginalisation
David Yallup
Will Handley
Michael P. Hobson
A. Lasenby
Pablo Lemos
25
1
0
23 May 2022
The Unreasonable Effectiveness of Deep Evidential Regression
The Unreasonable Effectiveness of Deep Evidential Regression
N. Meinert
J. Gawlikowski
Alexander Lavin
UQCV
EDL
177
35
0
20 May 2022
A General Framework for quantifying Aleatoric and Epistemic uncertainty
  in Graph Neural Networks
A General Framework for quantifying Aleatoric and Epistemic uncertainty in Graph Neural Networks
Sai Munikoti
D. Agarwal
Laya Das
Balasubramaniam Natarajan
BDL
UD
31
13
0
20 May 2022
Robust Representation via Dynamic Feature Aggregation
Robust Representation via Dynamic Feature Aggregation
Haozhe Liu
Haoqin Ji
Yuexiang Li
Nanjun He
Haoqian Wu
Feng Liu
Linlin Shen
Yefeng Zheng
AAML
OOD
32
3
0
16 May 2022
Training Uncertainty-Aware Classifiers with Conformalized Deep Learning
Training Uncertainty-Aware Classifiers with Conformalized Deep Learning
Bat-Sheva Einbinder
Yaniv Romano
Matteo Sesia
Yanfei Zhou
UQCV
23
48
0
12 May 2022
Norm-Scaling for Out-of-Distribution Detection
Norm-Scaling for Out-of-Distribution Detection
Deepak Ravikumar
Kaushik Roy
OODD
UQCV
19
2
0
06 May 2022
NeuralEF: Deconstructing Kernels by Deep Neural Networks
NeuralEF: Deconstructing Kernels by Deep Neural Networks
Zhijie Deng
Jiaxin Shi
Jun Zhu
16
18
0
30 Apr 2022
Doubting AI Predictions: Influence-Driven Second Opinion Recommendation
Doubting AI Predictions: Influence-Driven Second Opinion Recommendation
Maria De-Arteaga
Alexandra Chouldechova
Artur Dubrawski
27
4
0
29 Apr 2022
The Sillwood Technologies System for the VoiceMOS Challenge 2022
The Sillwood Technologies System for the VoiceMOS Challenge 2022
Jiameng Gao
18
0
0
08 Apr 2022
Self-Distribution Distillation: Efficient Uncertainty Estimation
Self-Distribution Distillation: Efficient Uncertainty Estimation
Yassir Fathullah
Mark J. F. Gales
UQCV
14
11
0
15 Mar 2022
Scalable Uncertainty Quantification for Deep Operator Networks using
  Randomized Priors
Scalable Uncertainty Quantification for Deep Operator Networks using Randomized Priors
Yibo Yang
Georgios Kissas
P. Perdikaris
BDL
UQCV
22
40
0
06 Mar 2022
MUAD: Multiple Uncertainties for Autonomous Driving, a benchmark for
  multiple uncertainty types and tasks
MUAD: Multiple Uncertainties for Autonomous Driving, a benchmark for multiple uncertainty types and tasks
Gianni Franchi
Xuanlong Yu
Andrei Bursuc
Ángel Tena
Rémi Kazmierczak
Séverine Dubuisson
Emanuel Aldea
David Filliat
UQCV
23
28
0
02 Mar 2022
Non-Volatile Memory Accelerated Posterior Estimation
Non-Volatile Memory Accelerated Posterior Estimation
A. Wood
Moshik Hershcovitch
Daniel Waddington
Sarel Cohen
Peter Chin
13
1
0
21 Feb 2022
Interacting Contour Stochastic Gradient Langevin Dynamics
Interacting Contour Stochastic Gradient Langevin Dynamics
Wei Deng
Siqi Liang
Botao Hao
Guang Lin
F. Liang
BDL
26
10
0
20 Feb 2022
Previous
1234
Next