ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1902.02476
  4. Cited By
A Simple Baseline for Bayesian Uncertainty in Deep Learning

A Simple Baseline for Bayesian Uncertainty in Deep Learning

7 February 2019
Wesley J. Maddox
T. Garipov
Pavel Izmailov
Dmitry Vetrov
A. Wilson
    BDL
    UQCV
ArXivPDFHTML

Papers citing "A Simple Baseline for Bayesian Uncertainty in Deep Learning"

50 / 189 papers shown
Title
Deep Ensembles Work, But Are They Necessary?
Deep Ensembles Work, But Are They Necessary?
Taiga Abe
E. Kelly Buchanan
Geoff Pleiss
R. Zemel
John P. Cunningham
OOD
UQCV
38
59
0
14 Feb 2022
PFGE: Parsimonious Fast Geometric Ensembling of DNNs
PFGE: Parsimonious Fast Geometric Ensembling of DNNs
Hao Guo
Jiyong Jin
B. Liu
FedML
26
1
0
14 Feb 2022
Lymphoma segmentation from 3D PET-CT images using a deep evidential
  network
Lymphoma segmentation from 3D PET-CT images using a deep evidential network
Ling Huang
S. Ruan
P. Decazes
Thierry Denoeux
3DPC
MedIm
38
37
0
31 Jan 2022
Stochastic Neural Networks with Infinite Width are Deterministic
Stochastic Neural Networks with Infinite Width are Deterministic
Liu Ziyin
Hanlin Zhang
Xiangming Meng
Yuting Lu
Eric P. Xing
Masakuni Ueda
26
3
0
30 Jan 2022
GradTail: Learning Long-Tailed Data Using Gradient-based Sample
  Weighting
GradTail: Learning Long-Tailed Data Using Gradient-based Sample Weighting
Zhao Chen
Vincent Casser
Henrik Kretzschmar
Dragomir Anguelov
26
5
0
16 Jan 2022
SpectraNet: Learned Recognition of Artificial Satellites From High
  Contrast Spectroscopic Imagery
SpectraNet: Learned Recognition of Artificial Satellites From High Contrast Spectroscopic Imagery
J. Gazak
Ian McQuaid
R. Swindle
M. Phelps
Justin Fletcher
14
14
0
10 Jan 2022
Model-Value Inconsistency as a Signal for Epistemic Uncertainty
Model-Value Inconsistency as a Signal for Epistemic Uncertainty
Angelos Filos
Eszter Vértes
Zita Marinho
Gregory Farquhar
Diana Borsa
A. Friesen
Feryal M. P. Behbahani
Tom Schaul
André Barreto
Simon Osindero
44
7
0
08 Dec 2021
Toward Practical Monocular Indoor Depth Estimation
Toward Practical Monocular Indoor Depth Estimation
Cho-Ying Wu
Jialiang Wang
Michael Hall
Ulrich Neumann
Shuochen Su
3DV
MDE
43
62
0
04 Dec 2021
Deep Probability Estimation
Deep Probability Estimation
Sheng Liu
Aakash Kaku
Weicheng Zhu
M. Leibovich
S. Mohan
...
Haoxiang Huang
L. Zanna
N. Razavian
Jonathan Niles-Weed
C. Fernandez‐Granda
UQCV
OOD
28
14
0
21 Nov 2021
A Survey on Epistemic (Model) Uncertainty in Supervised Learning: Recent
  Advances and Applications
A Survey on Epistemic (Model) Uncertainty in Supervised Learning: Recent Advances and Applications
Xinlei Zhou
Han Liu
Farhad Pourpanah
T. Zeng
Xizhao Wang
UQCV
UD
19
58
0
03 Nov 2021
Graph Posterior Network: Bayesian Predictive Uncertainty for Node
  Classification
Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classification
Maximilian Stadler
Bertrand Charpentier
Simon Geisler
Daniel Zügner
Stephan Günnemann
UQCV
BDL
36
80
0
26 Oct 2021
AutoDEUQ: Automated Deep Ensemble with Uncertainty Quantification
AutoDEUQ: Automated Deep Ensemble with Uncertainty Quantification
Romain Egele
R. Maulik
Krishnan Raghavan
Bethany Lusch
Isabelle M Guyon
Prasanna Balaprakash
UQCV
OOD
BDL
20
45
0
26 Oct 2021
Generalized Out-of-Distribution Detection: A Survey
Generalized Out-of-Distribution Detection: A Survey
Jingkang Yang
Kaiyang Zhou
Yixuan Li
Ziwei Liu
185
877
0
21 Oct 2021
Perturbated Gradients Updating within Unit Space for Deep Learning
Perturbated Gradients Updating within Unit Space for Deep Learning
Ching-Hsun Tseng
Liu Cheng
Shin-Jye Lee
Xiaojun Zeng
38
5
0
01 Oct 2021
A Quantitative Comparison of Epistemic Uncertainty Maps Applied to
  Multi-Class Segmentation
A Quantitative Comparison of Epistemic Uncertainty Maps Applied to Multi-Class Segmentation
Robin Camarasa
D. Bos
J. Hendrikse
P. Nederkoorn
D. Epidemiology
D. Neurology
Department of Computer Science
UQCV
24
12
0
22 Sep 2021
Connecting Low-Loss Subspace for Personalized Federated Learning
Connecting Low-Loss Subspace for Personalized Federated Learning
S. Hahn
Minwoo Jeong
Junghye Lee
FedML
19
18
0
16 Sep 2021
Stochastic Neural Radiance Fields: Quantifying Uncertainty in Implicit
  3D Representations
Stochastic Neural Radiance Fields: Quantifying Uncertainty in Implicit 3D Representations
Jianxiong Shen
Adria Ruiz
Antonio Agudo
Francesc Moreno-Noguer
BDL
22
68
0
05 Sep 2021
Explaining Bayesian Neural Networks
Explaining Bayesian Neural Networks
Kirill Bykov
Marina M.-C. Höhne
Adelaida Creosteanu
Klaus-Robert Muller
Frederick Klauschen
Shinichi Nakajima
Marius Kloft
BDL
AAML
31
25
0
23 Aug 2021
Triggering Failures: Out-Of-Distribution detection by learning from
  local adversarial attacks in Semantic Segmentation
Triggering Failures: Out-Of-Distribution detection by learning from local adversarial attacks in Semantic Segmentation
Victor Besnier
Andrei Bursuc
David Picard
Alexandre Briot
UQCV
24
48
0
03 Aug 2021
Batch Normalization Preconditioning for Neural Network Training
Batch Normalization Preconditioning for Neural Network Training
Susanna Lange
Kyle E. Helfrich
Qiang Ye
27
9
0
02 Aug 2021
Robust Semantic Segmentation with Superpixel-Mix
Robust Semantic Segmentation with Superpixel-Mix
Gianni Franchi
Nacim Belkhir
Mai Lan Ha
Yufei Hu
Andrei Bursuc
V. Blanz
Angela Yao
UQCV
33
22
0
02 Aug 2021
The Limiting Dynamics of SGD: Modified Loss, Phase Space Oscillations,
  and Anomalous Diffusion
The Limiting Dynamics of SGD: Modified Loss, Phase Space Oscillations, and Anomalous Diffusion
D. Kunin
Javier Sagastuy-Breña
Lauren Gillespie
Eshed Margalit
Hidenori Tanaka
Surya Ganguli
Daniel L. K. Yamins
31
15
0
19 Jul 2021
The Bayesian Learning Rule
The Bayesian Learning Rule
Mohammad Emtiyaz Khan
Håvard Rue
BDL
57
73
0
09 Jul 2021
A Survey of Uncertainty in Deep Neural Networks
A Survey of Uncertainty in Deep Neural Networks
J. Gawlikowski
Cedrique Rovile Njieutcheu Tassi
Mohsin Ali
Jongseo Lee
Matthias Humt
...
R. Roscher
Muhammad Shahzad
Wen Yang
R. Bamler
Xiaoxiang Zhu
BDL
UQCV
OOD
32
1,109
0
07 Jul 2021
Laplace Redux -- Effortless Bayesian Deep Learning
Laplace Redux -- Effortless Bayesian Deep Learning
Erik A. Daxberger
Agustinus Kristiadi
Alexander Immer
Runa Eschenhagen
Matthias Bauer
Philipp Hennig
BDL
UQCV
38
288
0
28 Jun 2021
Improving Uncertainty Calibration of Deep Neural Networks via Truth
  Discovery and Geometric Optimization
Improving Uncertainty Calibration of Deep Neural Networks via Truth Discovery and Geometric Optimization
Chunwei Ma
Ziyun Huang
Jiayi Xian
Mingchen Gao
Jinhui Xu
UQCV
25
14
0
25 Jun 2021
Meta-Cal: Well-controlled Post-hoc Calibration by Ranking
Meta-Cal: Well-controlled Post-hoc Calibration by Ranking
Xingchen Ma
Matthew B. Blaschko
18
34
0
10 May 2021
Multivariate Deep Evidential Regression
Multivariate Deep Evidential Regression
N. Meinert
Alexander Lavin
BDL
PER
EDL
UQCV
24
21
0
13 Apr 2021
deepregression: a Flexible Neural Network Framework for Semi-Structured
  Deep Distributional Regression
deepregression: a Flexible Neural Network Framework for Semi-Structured Deep Distributional Regression
David Rügamer
Chris Kolb
Cornelius Fritz
Florian Pfisterer
Philipp Kopper
...
Dominik Thalmeier
Philipp F. M. Baumann
Lucas Kook
Nadja Klein
Christian L. Müller
BDL
10
19
0
06 Apr 2021
Accurate and Reliable Forecasting using Stochastic Differential
  Equations
Accurate and Reliable Forecasting using Stochastic Differential Equations
Peng Cui
Zhijie Deng
Wenbo Hu
Jun Zhu
UQCV
32
1
0
28 Mar 2021
Deep Deterministic Uncertainty: A Simple Baseline
Deep Deterministic Uncertainty: A Simple Baseline
Jishnu Mukhoti
Andreas Kirsch
Joost R. van Amersfoort
Philip H. S. Torr
Y. Gal
UD
UQCV
PER
BDL
24
145
0
23 Feb 2021
Learning Neural Network Subspaces
Learning Neural Network Subspaces
Mitchell Wortsman
Maxwell Horton
Carlos Guestrin
Ali Farhadi
Mohammad Rastegari
UQCV
22
85
0
20 Feb 2021
DEUP: Direct Epistemic Uncertainty Prediction
DEUP: Direct Epistemic Uncertainty Prediction
Salem Lahlou
Moksh Jain
Hadi Nekoei
V. Butoi
Paul Bertin
Jarrid Rector-Brooks
Maksym Korablyov
Yoshua Bengio
PER
UQLM
UQCV
UD
202
81
0
16 Feb 2021
DeepGLEAM: A hybrid mechanistic and deep learning model for COVID-19
  forecasting
DeepGLEAM: A hybrid mechanistic and deep learning model for COVID-19 forecasting
Dongxian Wu
Liyao (Mars) Gao
X. Xiong
Matteo Chinazzi
Alessandro Vespignani
Yi-An Ma
Rose Yu
FedML
11
27
0
12 Feb 2021
A Survey on Ensemble Learning under the Era of Deep Learning
A Survey on Ensemble Learning under the Era of Deep Learning
Yongquan Yang
Haijun Lv
Ning Chen
OOD
67
182
0
21 Jan 2021
In Defense of Pseudo-Labeling: An Uncertainty-Aware Pseudo-label
  Selection Framework for Semi-Supervised Learning
In Defense of Pseudo-Labeling: An Uncertainty-Aware Pseudo-label Selection Framework for Semi-Supervised Learning
Mamshad Nayeem Rizve
Kevin Duarte
Y. S. Rawat
M. Shah
226
509
0
15 Jan 2021
DICE: Diversity in Deep Ensembles via Conditional Redundancy Adversarial
  Estimation
DICE: Diversity in Deep Ensembles via Conditional Redundancy Adversarial Estimation
Alexandre Ramé
Matthieu Cord
FedML
48
51
0
14 Jan 2021
Bayesian neural networks for weak solution of PDEs with uncertainty
  quantification
Bayesian neural networks for weak solution of PDEs with uncertainty quantification
Xiaoxuan Zhang
K. Garikipati
AI4CE
46
11
0
13 Jan 2021
On the Calibration and Uncertainty of Neural Learning to Rank Models
On the Calibration and Uncertainty of Neural Learning to Rank Models
Gustavo Penha
C. Hauff
169
30
0
12 Jan 2021
Advances in Electron Microscopy with Deep Learning
Advances in Electron Microscopy with Deep Learning
Jeffrey M. Ede
32
2
0
04 Jan 2021
Semantics for Robotic Mapping, Perception and Interaction: A Survey
Semantics for Robotic Mapping, Perception and Interaction: A Survey
Sourav Garg
Niko Sünderhauf
Feras Dayoub
D. Morrison
Akansel Cosgun
...
Tat-Jun Chin
Ian Reid
Stephen Gould
Peter Corke
Michael Milford
22
115
0
02 Jan 2021
Confidence Estimation via Auxiliary Models
Confidence Estimation via Auxiliary Models
Charles Corbière
Nicolas Thome
A. Saporta
Tuan-Hung Vu
Matthieu Cord
P. Pérez
TPM
29
47
0
11 Dec 2020
A Review and Comparative Study on Probabilistic Object Detection in
  Autonomous Driving
A Review and Comparative Study on Probabilistic Object Detection in Autonomous Driving
Di Feng
Ali Harakeh
Steven Waslander
Klaus C. J. Dietmayer
AAML
UQCV
EDL
24
223
0
20 Nov 2020
DS-UI: Dual-Supervised Mixture of Gaussian Mixture Models for
  Uncertainty Inference
DS-UI: Dual-Supervised Mixture of Gaussian Mixture Models for Uncertainty Inference
Jiyang Xie
Zhanyu Ma
Jing-Hao Xue
Guoqiang Zhang
Jun Guo
BDL
27
11
0
17 Nov 2020
A Random Matrix Theory Approach to Damping in Deep Learning
A Random Matrix Theory Approach to Damping in Deep Learning
Diego Granziol
Nicholas P. Baskerville
AI4CE
ODL
26
2
0
15 Nov 2020
A Bayesian Perspective on Training Speed and Model Selection
A Bayesian Perspective on Training Speed and Model Selection
Clare Lyle
Lisa Schut
Binxin Ru
Y. Gal
Mark van der Wilk
39
24
0
27 Oct 2020
PEP: Parameter Ensembling by Perturbation
PEP: Parameter Ensembling by Perturbation
Alireza Mehrtash
Purang Abolmaesumi
Polina Golland
Tina Kapur
Demian Wassermann
W. Wells
17
10
0
24 Oct 2020
Neural Bootstrapper
Neural Bootstrapper
Minsuk Shin
Hyungjoon Cho
Hyun-Seok Min
Sungbin Lim
UQCV
BDL
22
7
0
02 Oct 2020
Ramifications of Approximate Posterior Inference for Bayesian Deep
  Learning in Adversarial and Out-of-Distribution Settings
Ramifications of Approximate Posterior Inference for Bayesian Deep Learning in Adversarial and Out-of-Distribution Settings
John Mitros
A. Pakrashi
Brian Mac Namee
UQCV
26
2
0
03 Sep 2020
Interpretable Sequence Learning for COVID-19 Forecasting
Interpretable Sequence Learning for COVID-19 Forecasting
Sercan Ö. Arik
Chun-Liang Li
Jinsung Yoon
Rajarishi Sinha
Arkady Epshteyn
...
Martin Nikoltchev
Yash Sonthalia
Hootan Nakhost
Elli Kanal
Tomas Pfister
AI4TS
20
83
0
03 Aug 2020
Previous
1234
Next