Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1903.08114
Cited By
Exact Gaussian Processes on a Million Data Points
19 March 2019
Ke Alexander Wang
Geoff Pleiss
Jacob R. Gardner
Stephen Tyree
Kilian Q. Weinberger
A. Wilson
GP
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Exact Gaussian Processes on a Million Data Points"
50 / 142 papers shown
Title
Integrative Analysis and Imputation of Multiple Data Streams via Deep Gaussian Processes
Ali Akbar Septiandri
Deyu Ming
F. Alejandro DiazDelaO
Takoua Jendoubi
Samiran Ray
7
0
0
17 May 2025
Scaling Gaussian Process Regression with Full Derivative Observations
Daniel Huang
BDL
GP
41
0
0
14 May 2025
Adaptive Replication Strategies in Trust-Region-Based Bayesian Optimization of Stochastic Functions
Mickael Binois
Jeffrey Larson
74
0
0
29 Apr 2025
On learning functions over biological sequence space: relating Gaussian process priors, regularization, and gauge fixing
Samantha Petti
Carlos Martí-Gómez
Justin B. Kinney
Juannan Zhou
David M. McCandlish
GP
24
0
0
26 Apr 2025
Amortized Safe Active Learning for Real-Time Data Acquisition: Pretrained Neural Policies from Simulated Nonparametric Functions
Cen-You Li
Marc Toussaint
Barbara Rakitsch
Christoph Zimmer
OffRL
231
0
0
26 Jan 2025
Compactly-supported nonstationary kernels for computing exact Gaussian processes on big data
M. Risser
M. Noack
Hengrui Luo
Ronald Pandolfi
GP
38
0
0
07 Nov 2024
Computation-Aware Gaussian Processes: Model Selection And Linear-Time Inference
Jonathan Wenger
Kaiwen Wu
Philipp Hennig
Jacob R. Gardner
Geoff Pleiss
John P. Cunningham
40
5
0
01 Nov 2024
High-Dimensional Gaussian Process Regression with Soft Kernel Interpolation
Chris Camaño
Daniel Huang
BDL
GP
45
1
0
28 Oct 2024
Scaling Gaussian Processes for Learning Curve Prediction via Latent Kronecker Structure
Jihao Andreas Lin
Sebastian Ament
Maximilian Balandat
E. Bakshy
BDL
29
2
0
11 Oct 2024
Embrace rejection: Kernel matrix approximation by accelerated randomly pivoted Cholesky
Ethan N. Epperly
J. Tropp
R. Webber
34
4
0
04 Oct 2024
Gaussian Processes Sampling with Sparse Grids under Additive Schwarz Preconditioner
Haoyuan Chen
Rui Tuo
40
0
0
01 Aug 2024
MUSE-Net: Missingness-aware mUlti-branching Self-attention Encoder for Irregular Longitudinal Electronic Health Records
Zekai Wang
Tieming Liu
B. Yao
50
0
0
30 Jun 2024
Contraction rates for conjugate gradient and Lanczos approximate posteriors in Gaussian process regression
Bernhard Stankewitz
Botond Szabo
45
2
0
18 Jun 2024
Improving Linear System Solvers for Hyperparameter Optimisation in Iterative Gaussian Processes
J. Lin
Shreyas Padhy
Bruno Mlodozeniec
Javier Antorán
José Miguel Hernández-Lobato
46
2
0
28 May 2024
Warm Start Marginal Likelihood Optimisation for Iterative Gaussian Processes
J. Lin
Shreyas Padhy
Bruno Mlodozeniec
José Miguel Hernández-Lobato
37
1
0
28 May 2024
Gradients of Functions of Large Matrices
Nicholas Krämer
Pablo Moreno-Muñoz
Hrittik Roy
Søren Hauberg
40
0
0
27 May 2024
Attacking Bayes: On the Adversarial Robustness of Bayesian Neural Networks
Yunzhen Feng
Tim G. J. Rudner
Nikolaos Tsilivis
Julia Kempe
AAML
BDL
43
1
0
27 Apr 2024
Kermut: Composite kernel regression for protein variant effects
Peter Mørch Groth
Mads Herbert Kerrn
Lars Olsen
Jesper Salomon
Wouter Boomsma
47
2
0
09 Apr 2024
Kernel Multigrid: Accelerate Back-fitting via Sparse Gaussian Process Regression
Lu Zou
Liang Ding
39
0
0
20 Mar 2024
Function-space Parameterization of Neural Networks for Sequential Learning
Aidan Scannell
Riccardo Mereu
Paul E. Chang
Ella Tamir
Joni Pajarinen
Arno Solin
BDL
34
5
0
16 Mar 2024
Automated Efficient Estimation using Monte Carlo Efficient Influence Functions
Raj Agrawal
Sam Witty
Andy Zane
Eli Bingham
37
2
0
29 Feb 2024
Efficiently Computable Safety Bounds for Gaussian Processes in Active Learning
Jörn Tebbe
Christoph Zimmer
A. Steland
Markus Lange-Hegermann
Fabian Mies
GP
32
3
0
28 Feb 2024
Recommendations for Baselines and Benchmarking Approximate Gaussian Processes
Sebastian W. Ober
A. Artemev
Marcel Wagenlander
Rudolfs Grobins
Mark van der Wilk
GP
18
1
0
15 Feb 2024
Variational Elliptical Processes
Maria B˙ankestad
Jens Sjölund
Jalil Taghia
Thomas B. Schon
33
2
0
21 Nov 2023
SemiGPC: Distribution-Aware Label Refinement for Imbalanced Semi-Supervised Learning Using Gaussian Processes
Abdelhak Lemkhenter
Manchen Wang
L. Zancato
Gurumurthy Swaminathan
Paolo Favaro
Davide Modolo
41
0
0
03 Nov 2023
Stochastic Gradient Descent for Gaussian Processes Done Right
J. Lin
Shreyas Padhy
Javier Antorán
Austin Tripp
Alexander Terenin
Csaba Szepesvári
José Miguel Hernández-Lobato
David Janz
18
8
0
31 Oct 2023
Large-Scale Gaussian Processes via Alternating Projection
Kaiwen Wu
Jonathan Wenger
Haydn Thomas Jones
Geoff Pleiss
Jacob R. Gardner
45
8
0
26 Oct 2023
Deterministic Langevin Unconstrained Optimization with Normalizing Flows
James M. Sullivan
U. Seljak
29
0
0
01 Oct 2023
Gradient and Uncertainty Enhanced Sequential Sampling for Global Fit
Sven Lämmle
Can Bogoclu
K. Cremanns
D. Roos
30
5
0
29 Sep 2023
CoLA: Exploiting Compositional Structure for Automatic and Efficient Numerical Linear Algebra
Andres Potapczynski
Marc Finzi
Geoff Pleiss
Andrew Gordon Wilson
20
7
0
06 Sep 2023
FaIRGP: A Bayesian Energy Balance Model for Surface Temperatures Emulation
S. Bouabid
Dino Sejdinovic
D. Watson‐Parris
16
5
0
14 Jul 2023
Beyond Intuition, a Framework for Applying GPs to Real-World Data
K. Tazi
J. Lin
Ross Viljoen
A. Gardner
S. T. John
Hong Ge
Richard Turner
GP
18
3
0
06 Jul 2023
Data-Driven Design for Metamaterials and Multiscale Systems: A Review
Doksoo Lee
Wei Chen
Liwei Wang
Yu-Chin Chan
Wei Chen
AI4CE
30
80
0
01 Jul 2023
Leveraging Locality and Robustness to Achieve Massively Scalable Gaussian Process Regression
Robert Allison
Anthony Stephenson
F. Samuel
Edward O. Pyzer-Knapp
UQCV
17
3
0
26 Jun 2023
Sampling from Gaussian Process Posteriors using Stochastic Gradient Descent
J. Lin
Javier Antorán
Shreyas Padhy
David Janz
José Miguel Hernández-Lobato
Alexander Terenin
29
23
0
20 Jun 2023
Probabilistic Unrolling: Scalable, Inverse-Free Maximum Likelihood Estimation for Latent Gaussian Models
Alexander Lin
Bahareh Tolooshams
Yves Atchadé
Demba E. Ba
36
1
0
05 Jun 2023
Disambiguated Attention Embedding for Multi-Instance Partial-Label Learning
Wei Tang
Weijia Zhang
Min-Ling Zhang
32
9
0
26 May 2023
Privacy-aware Gaussian Process Regression
Rui Tuo
R. Bhattacharya
14
1
0
25 May 2023
Uniform approximation of common Gaussian process kernels using equispaced Fourier grids
A. Barnett
P. Greengard
M. Rachh
23
7
0
18 May 2023
Robust, randomized preconditioning for kernel ridge regression
Mateo Díaz
Ethan N. Epperly
Zachary Frangella
J. Tropp
R. Webber
39
12
0
24 Apr 2023
Kernel Regression with Infinite-Width Neural Networks on Millions of Examples
Ben Adlam
Jaehoon Lee
Shreyas Padhy
Zachary Nado
Jasper Snoek
26
11
0
09 Mar 2023
On Pathologies in KL-Regularized Reinforcement Learning from Expert Demonstrations
Tim G. J. Rudner
Cong Lu
Michael A. Osborne
Yarin Gal
Yee Whye Teh
OffRL
38
27
0
28 Dec 2022
Reconstructing Kernel-based Machine Learning Force Fields with Super-linear Convergence
Stefan Blücher
Klaus-Robert Muller
Stefan Chmiela
19
4
0
24 Dec 2022
Multi-Instance Partial-Label Learning: Towards Exploiting Dual Inexact Supervision
Wei Tang
Weijia Zhang
Min-Ling Zhang
19
12
0
18 Dec 2022
Environmental Sensor Placement with Convolutional Gaussian Neural Processes
Tom R. Andersson
W. Bruinsma
Stratis Markou
James Requeima
Alejandro Coca-Castro
...
A. Ellis
M. Lazzara
Daniel P. Jones
Scott Hosking
Richard Turner
25
13
0
18 Nov 2022
Equispaced Fourier representations for efficient Gaussian process regression from a billion data points
P. Greengard
M. Rachh
A. Barnett
24
12
0
18 Oct 2022
Computationally-efficient initialisation of GPs: The generalised variogram method
Felipe A. Tobar
Elsa Cazelles
T. Wolff
19
0
0
11 Oct 2022
Log-Linear-Time Gaussian Processes Using Binary Tree Kernels
Michael K. Cohen
Sam Daulton
Michael A. Osborne
GP
32
5
0
04 Oct 2022
Bézier Gaussian Processes for Tall and Wide Data
Martin Jørgensen
Michael A. Osborne
GP
21
2
0
01 Sep 2022
Gaussian Process Surrogate Models for Neural Networks
Michael Y. Li
Erin Grant
Thomas Griffiths
BDL
SyDa
38
7
0
11 Aug 2022
1
2
3
Next