ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1903.08114
  4. Cited By
Exact Gaussian Processes on a Million Data Points

Exact Gaussian Processes on a Million Data Points

19 March 2019
Ke Alexander Wang
Geoff Pleiss
Jacob R. Gardner
Stephen Tyree
Kilian Q. Weinberger
A. Wilson
    GP
ArXivPDFHTML

Papers citing "Exact Gaussian Processes on a Million Data Points"

50 / 142 papers shown
Title
Integrative Analysis and Imputation of Multiple Data Streams via Deep Gaussian Processes
Integrative Analysis and Imputation of Multiple Data Streams via Deep Gaussian Processes
Ali Akbar Septiandri
Deyu Ming
F. Alejandro DiazDelaO
Takoua Jendoubi
Samiran Ray
7
0
0
17 May 2025
Scaling Gaussian Process Regression with Full Derivative Observations
Scaling Gaussian Process Regression with Full Derivative Observations
Daniel Huang
BDL
GP
41
0
0
14 May 2025
Adaptive Replication Strategies in Trust-Region-Based Bayesian Optimization of Stochastic Functions
Adaptive Replication Strategies in Trust-Region-Based Bayesian Optimization of Stochastic Functions
Mickael Binois
Jeffrey Larson
74
0
0
29 Apr 2025
On learning functions over biological sequence space: relating Gaussian process priors, regularization, and gauge fixing
On learning functions over biological sequence space: relating Gaussian process priors, regularization, and gauge fixing
Samantha Petti
Carlos Martí-Gómez
Justin B. Kinney
Juannan Zhou
David M. McCandlish
GP
24
0
0
26 Apr 2025
Amortized Safe Active Learning for Real-Time Data Acquisition: Pretrained Neural Policies from Simulated Nonparametric Functions
Amortized Safe Active Learning for Real-Time Data Acquisition: Pretrained Neural Policies from Simulated Nonparametric Functions
Cen-You Li
Marc Toussaint
Barbara Rakitsch
Christoph Zimmer
OffRL
237
0
0
26 Jan 2025
Compactly-supported nonstationary kernels for computing exact Gaussian processes on big data
Compactly-supported nonstationary kernels for computing exact Gaussian processes on big data
M. Risser
M. Noack
Hengrui Luo
Ronald Pandolfi
GP
38
0
0
07 Nov 2024
Computation-Aware Gaussian Processes: Model Selection And Linear-Time
  Inference
Computation-Aware Gaussian Processes: Model Selection And Linear-Time Inference
Jonathan Wenger
Kaiwen Wu
Philipp Hennig
Jacob R. Gardner
Geoff Pleiss
John P. Cunningham
40
5
0
01 Nov 2024
High-Dimensional Gaussian Process Regression with Soft Kernel Interpolation
High-Dimensional Gaussian Process Regression with Soft Kernel Interpolation
Chris Camaño
Daniel Huang
BDL
GP
45
1
0
28 Oct 2024
Scaling Gaussian Processes for Learning Curve Prediction via Latent
  Kronecker Structure
Scaling Gaussian Processes for Learning Curve Prediction via Latent Kronecker Structure
Jihao Andreas Lin
Sebastian Ament
Maximilian Balandat
E. Bakshy
BDL
29
2
0
11 Oct 2024
Embrace rejection: Kernel matrix approximation by accelerated randomly pivoted Cholesky
Embrace rejection: Kernel matrix approximation by accelerated randomly pivoted Cholesky
Ethan N. Epperly
J. Tropp
R. Webber
34
4
0
04 Oct 2024
Gaussian Processes Sampling with Sparse Grids under Additive Schwarz
  Preconditioner
Gaussian Processes Sampling with Sparse Grids under Additive Schwarz Preconditioner
Haoyuan Chen
Rui Tuo
40
0
0
01 Aug 2024
MUSE-Net: Missingness-aware mUlti-branching Self-attention Encoder for Irregular Longitudinal Electronic Health Records
MUSE-Net: Missingness-aware mUlti-branching Self-attention Encoder for Irregular Longitudinal Electronic Health Records
Zekai Wang
Tieming Liu
B. Yao
50
0
0
30 Jun 2024
Contraction rates for conjugate gradient and Lanczos approximate
  posteriors in Gaussian process regression
Contraction rates for conjugate gradient and Lanczos approximate posteriors in Gaussian process regression
Bernhard Stankewitz
Botond Szabo
45
2
0
18 Jun 2024
Improving Linear System Solvers for Hyperparameter Optimisation in Iterative Gaussian Processes
Improving Linear System Solvers for Hyperparameter Optimisation in Iterative Gaussian Processes
J. Lin
Shreyas Padhy
Bruno Mlodozeniec
Javier Antorán
José Miguel Hernández-Lobato
46
2
0
28 May 2024
Warm Start Marginal Likelihood Optimisation for Iterative Gaussian
  Processes
Warm Start Marginal Likelihood Optimisation for Iterative Gaussian Processes
J. Lin
Shreyas Padhy
Bruno Mlodozeniec
José Miguel Hernández-Lobato
37
1
0
28 May 2024
Gradients of Functions of Large Matrices
Gradients of Functions of Large Matrices
Nicholas Krämer
Pablo Moreno-Muñoz
Hrittik Roy
Søren Hauberg
40
0
0
27 May 2024
Attacking Bayes: On the Adversarial Robustness of Bayesian Neural
  Networks
Attacking Bayes: On the Adversarial Robustness of Bayesian Neural Networks
Yunzhen Feng
Tim G. J. Rudner
Nikolaos Tsilivis
Julia Kempe
AAML
BDL
43
1
0
27 Apr 2024
Kermut: Composite kernel regression for protein variant effects
Kermut: Composite kernel regression for protein variant effects
Peter Mørch Groth
Mads Herbert Kerrn
Lars Olsen
Jesper Salomon
Wouter Boomsma
47
2
0
09 Apr 2024
Kernel Multigrid: Accelerate Back-fitting via Sparse Gaussian Process
  Regression
Kernel Multigrid: Accelerate Back-fitting via Sparse Gaussian Process Regression
Lu Zou
Liang Ding
39
0
0
20 Mar 2024
Function-space Parameterization of Neural Networks for Sequential
  Learning
Function-space Parameterization of Neural Networks for Sequential Learning
Aidan Scannell
Riccardo Mereu
Paul E. Chang
Ella Tamir
Joni Pajarinen
Arno Solin
BDL
34
5
0
16 Mar 2024
Automated Efficient Estimation using Monte Carlo Efficient Influence
  Functions
Automated Efficient Estimation using Monte Carlo Efficient Influence Functions
Raj Agrawal
Sam Witty
Andy Zane
Eli Bingham
40
2
0
29 Feb 2024
Efficiently Computable Safety Bounds for Gaussian Processes in Active
  Learning
Efficiently Computable Safety Bounds for Gaussian Processes in Active Learning
Jörn Tebbe
Christoph Zimmer
A. Steland
Markus Lange-Hegermann
Fabian Mies
GP
32
3
0
28 Feb 2024
Recommendations for Baselines and Benchmarking Approximate Gaussian
  Processes
Recommendations for Baselines and Benchmarking Approximate Gaussian Processes
Sebastian W. Ober
A. Artemev
Marcel Wagenlander
Rudolfs Grobins
Mark van der Wilk
GP
18
1
0
15 Feb 2024
Variational Elliptical Processes
Variational Elliptical Processes
Maria B˙ankestad
Jens Sjölund
Jalil Taghia
Thomas B. Schon
36
2
0
21 Nov 2023
SemiGPC: Distribution-Aware Label Refinement for Imbalanced
  Semi-Supervised Learning Using Gaussian Processes
SemiGPC: Distribution-Aware Label Refinement for Imbalanced Semi-Supervised Learning Using Gaussian Processes
Abdelhak Lemkhenter
Manchen Wang
L. Zancato
Gurumurthy Swaminathan
Paolo Favaro
Davide Modolo
41
0
0
03 Nov 2023
Stochastic Gradient Descent for Gaussian Processes Done Right
Stochastic Gradient Descent for Gaussian Processes Done Right
J. Lin
Shreyas Padhy
Javier Antorán
Austin Tripp
Alexander Terenin
Csaba Szepesvári
José Miguel Hernández-Lobato
David Janz
18
8
0
31 Oct 2023
Large-Scale Gaussian Processes via Alternating Projection
Large-Scale Gaussian Processes via Alternating Projection
Kaiwen Wu
Jonathan Wenger
Haydn Thomas Jones
Geoff Pleiss
Jacob R. Gardner
48
8
0
26 Oct 2023
Deterministic Langevin Unconstrained Optimization with Normalizing Flows
Deterministic Langevin Unconstrained Optimization with Normalizing Flows
James M. Sullivan
U. Seljak
29
0
0
01 Oct 2023
Gradient and Uncertainty Enhanced Sequential Sampling for Global Fit
Gradient and Uncertainty Enhanced Sequential Sampling for Global Fit
Sven Lämmle
Can Bogoclu
K. Cremanns
D. Roos
30
5
0
29 Sep 2023
CoLA: Exploiting Compositional Structure for Automatic and Efficient
  Numerical Linear Algebra
CoLA: Exploiting Compositional Structure for Automatic and Efficient Numerical Linear Algebra
Andres Potapczynski
Marc Finzi
Geoff Pleiss
Andrew Gordon Wilson
20
7
0
06 Sep 2023
FaIRGP: A Bayesian Energy Balance Model for Surface Temperatures
  Emulation
FaIRGP: A Bayesian Energy Balance Model for Surface Temperatures Emulation
S. Bouabid
Dino Sejdinovic
D. Watson‐Parris
16
5
0
14 Jul 2023
Beyond Intuition, a Framework for Applying GPs to Real-World Data
Beyond Intuition, a Framework for Applying GPs to Real-World Data
K. Tazi
J. Lin
Ross Viljoen
A. Gardner
S. T. John
Hong Ge
Richard Turner
GP
18
3
0
06 Jul 2023
Data-Driven Design for Metamaterials and Multiscale Systems: A Review
Data-Driven Design for Metamaterials and Multiscale Systems: A Review
Doksoo Lee
Wei Chen
Liwei Wang
Yu-Chin Chan
Wei Chen
AI4CE
35
80
0
01 Jul 2023
Leveraging Locality and Robustness to Achieve Massively Scalable
  Gaussian Process Regression
Leveraging Locality and Robustness to Achieve Massively Scalable Gaussian Process Regression
Robert Allison
Anthony Stephenson
F. Samuel
Edward O. Pyzer-Knapp
UQCV
17
3
0
26 Jun 2023
Sampling from Gaussian Process Posteriors using Stochastic Gradient
  Descent
Sampling from Gaussian Process Posteriors using Stochastic Gradient Descent
J. Lin
Javier Antorán
Shreyas Padhy
David Janz
José Miguel Hernández-Lobato
Alexander Terenin
29
23
0
20 Jun 2023
Probabilistic Unrolling: Scalable, Inverse-Free Maximum Likelihood
  Estimation for Latent Gaussian Models
Probabilistic Unrolling: Scalable, Inverse-Free Maximum Likelihood Estimation for Latent Gaussian Models
Alexander Lin
Bahareh Tolooshams
Yves Atchadé
Demba E. Ba
36
1
0
05 Jun 2023
Disambiguated Attention Embedding for Multi-Instance Partial-Label
  Learning
Disambiguated Attention Embedding for Multi-Instance Partial-Label Learning
Wei Tang
Weijia Zhang
Min-Ling Zhang
34
9
0
26 May 2023
Privacy-aware Gaussian Process Regression
Privacy-aware Gaussian Process Regression
Rui Tuo
R. Bhattacharya
14
1
0
25 May 2023
Uniform approximation of common Gaussian process kernels using
  equispaced Fourier grids
Uniform approximation of common Gaussian process kernels using equispaced Fourier grids
A. Barnett
P. Greengard
M. Rachh
23
7
0
18 May 2023
Robust, randomized preconditioning for kernel ridge regression
Robust, randomized preconditioning for kernel ridge regression
Mateo Díaz
Ethan N. Epperly
Zachary Frangella
J. Tropp
R. Webber
42
12
0
24 Apr 2023
Kernel Regression with Infinite-Width Neural Networks on Millions of
  Examples
Kernel Regression with Infinite-Width Neural Networks on Millions of Examples
Ben Adlam
Jaehoon Lee
Shreyas Padhy
Zachary Nado
Jasper Snoek
26
11
0
09 Mar 2023
On Pathologies in KL-Regularized Reinforcement Learning from Expert
  Demonstrations
On Pathologies in KL-Regularized Reinforcement Learning from Expert Demonstrations
Tim G. J. Rudner
Cong Lu
Michael A. Osborne
Yarin Gal
Yee Whye Teh
OffRL
38
27
0
28 Dec 2022
Reconstructing Kernel-based Machine Learning Force Fields with
  Super-linear Convergence
Reconstructing Kernel-based Machine Learning Force Fields with Super-linear Convergence
Stefan Blücher
Klaus-Robert Muller
Stefan Chmiela
21
4
0
24 Dec 2022
Multi-Instance Partial-Label Learning: Towards Exploiting Dual Inexact
  Supervision
Multi-Instance Partial-Label Learning: Towards Exploiting Dual Inexact Supervision
Wei Tang
Weijia Zhang
Min-Ling Zhang
19
12
0
18 Dec 2022
Environmental Sensor Placement with Convolutional Gaussian Neural
  Processes
Environmental Sensor Placement with Convolutional Gaussian Neural Processes
Tom R. Andersson
W. Bruinsma
Stratis Markou
James Requeima
Alejandro Coca-Castro
...
A. Ellis
M. Lazzara
Daniel P. Jones
Scott Hosking
Richard Turner
25
13
0
18 Nov 2022
Equispaced Fourier representations for efficient Gaussian process
  regression from a billion data points
Equispaced Fourier representations for efficient Gaussian process regression from a billion data points
P. Greengard
M. Rachh
A. Barnett
24
12
0
18 Oct 2022
Computationally-efficient initialisation of GPs: The generalised
  variogram method
Computationally-efficient initialisation of GPs: The generalised variogram method
Felipe A. Tobar
Elsa Cazelles
T. Wolff
19
0
0
11 Oct 2022
Log-Linear-Time Gaussian Processes Using Binary Tree Kernels
Log-Linear-Time Gaussian Processes Using Binary Tree Kernels
Michael K. Cohen
Sam Daulton
Michael A. Osborne
GP
32
5
0
04 Oct 2022
Bézier Gaussian Processes for Tall and Wide Data
Bézier Gaussian Processes for Tall and Wide Data
Martin Jørgensen
Michael A. Osborne
GP
21
2
0
01 Sep 2022
Gaussian Process Surrogate Models for Neural Networks
Gaussian Process Surrogate Models for Neural Networks
Michael Y. Li
Erin Grant
Thomas Griffiths
BDL
SyDa
38
7
0
11 Aug 2022
123
Next