ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1903.08114
  4. Cited By
Exact Gaussian Processes on a Million Data Points

Exact Gaussian Processes on a Million Data Points

19 March 2019
Ke Alexander Wang
Geoff Pleiss
Jacob R. Gardner
Stephen Tyree
Kilian Q. Weinberger
A. Wilson
    GP
ArXivPDFHTML

Papers citing "Exact Gaussian Processes on a Million Data Points"

50 / 142 papers shown
Title
Low-Precision Arithmetic for Fast Gaussian Processes
Low-Precision Arithmetic for Fast Gaussian Processes
Wesley J. Maddox
Andres Potapczynski
A. Wilson
27
12
0
14 Jul 2022
Memory Safe Computations with XLA Compiler
Memory Safe Computations with XLA Compiler
A. Artemev
Tilman Roeder
Mark van der Wilk
31
8
0
28 Jun 2022
Sparse Kernel Gaussian Processes through Iterative Charted Refinement
  (ICR)
Sparse Kernel Gaussian Processes through Iterative Charted Refinement (ICR)
G. Edenhofer
R. Leike
Philipp Frank
T. Ensslin
13
5
0
21 Jun 2022
Scalable First-Order Bayesian Optimization via Structured Automatic
  Differentiation
Scalable First-Order Bayesian Optimization via Structured Automatic Differentiation
Sebastian Ament
Carla P. Gomes
18
8
0
16 Jun 2022
Posterior and Computational Uncertainty in Gaussian Processes
Posterior and Computational Uncertainty in Gaussian Processes
Jonathan Wenger
Geoff Pleiss
Marvin Pfortner
Philipp Hennig
John P. Cunningham
80
19
0
30 May 2022
Fast Gaussian Process Posterior Mean Prediction via Local Cross
  Validation and Precomputation
Fast Gaussian Process Posterior Mean Prediction via Local Cross Validation and Precomputation
Alec M. Dunton
Benjamin W. Priest
Amanda Muyskens
GP
32
3
0
22 May 2022
Exact Gaussian Processes for Massive Datasets via Non-Stationary
  Sparsity-Discovering Kernels
Exact Gaussian Processes for Massive Datasets via Non-Stationary Sparsity-Discovering Kernels
M. Noack
Harinarayan Krishnan
M. Risser
Kristofer G. Reyes
GP
77
16
0
18 May 2022
Incorporating Prior Knowledge into Neural Networks through an Implicit
  Composite Kernel
Incorporating Prior Knowledge into Neural Networks through an Implicit Composite Kernel
Ziyang Jiang
Tongshu Zheng
Yiling Liu
David Carlson
32
4
0
15 May 2022
Generalized Variational Inference in Function Spaces: Gaussian Measures
  meet Bayesian Deep Learning
Generalized Variational Inference in Function Spaces: Gaussian Measures meet Bayesian Deep Learning
Veit Wild
Robert Hu
Dino Sejdinovic
BDL
51
11
0
12 May 2022
Inducing Gaussian Process Networks
Inducing Gaussian Process Networks
Alessandro Tibo
Thomas D. Nielsen
BDL
14
1
0
21 Apr 2022
Safe Active Learning for Multi-Output Gaussian Processes
Safe Active Learning for Multi-Output Gaussian Processes
Cen-You Li
Barbara Rakitsch
Christoph Zimmer
UQCV
30
17
0
28 Mar 2022
GPU-Accelerated Policy Optimization via Batch Automatic Differentiation
  of Gaussian Processes for Real-World Control
GPU-Accelerated Policy Optimization via Batch Automatic Differentiation of Gaussian Processes for Real-World Control
Abdolreza Taheri
Joni Pajarinen
R. Ghabcheloo
GP
19
3
0
28 Feb 2022
Parallel MCMC Without Embarrassing Failures
Parallel MCMC Without Embarrassing Failures
Daniel Augusto R. M. A. de Souza
Diego Mesquita
Samuel Kaski
Luigi Acerbi
42
11
0
22 Feb 2022
Adaptive Cholesky Gaussian Processes
Adaptive Cholesky Gaussian Processes
Simon Bartels
Kristoffer Stensbo-Smidt
Pablo Moreno-Muñoz
Wouter Boomsma
J. Frellsen
Søren Hauberg
33
3
0
22 Feb 2022
Variational Nearest Neighbor Gaussian Process
Variational Nearest Neighbor Gaussian Process
Luhuan Wu
Geoff Pleiss
John P. Cunningham
BDL
29
15
0
03 Feb 2022
Giga-scale Kernel Matrix Vector Multiplication on GPU
Giga-scale Kernel Matrix Vector Multiplication on GPU
Robert Hu
Siu Lun Chau
Dino Sejdinovic
J. Glaunès
29
2
0
02 Feb 2022
An Overview of Uncertainty Quantification Methods for Infinite Neural
  Networks
An Overview of Uncertainty Quantification Methods for Infinite Neural Networks
Florian Juengermann
Maxime Laasri
Marius Merkle
BDL
11
0
0
13 Jan 2022
When are Iterative Gaussian Processes Reliably Accurate?
When are Iterative Gaussian Processes Reliably Accurate?
Wesley J. Maddox
Sanyam Kapoor
A. Wilson
35
10
0
31 Dec 2021
Correlated Product of Experts for Sparse Gaussian Process Regression
Correlated Product of Experts for Sparse Gaussian Process Regression
Manuel Schürch
Dario Azzimonti
A. Benavoli
Marco Zaffalon
24
12
0
17 Dec 2021
Gaussian Process Inference Using Mini-batch Stochastic Gradient Descent:
  Convergence Guarantees and Empirical Benefits
Gaussian Process Inference Using Mini-batch Stochastic Gradient Descent: Convergence Guarantees and Empirical Benefits
Hao Chen
Lili Zheng
Raed Al Kontar
Garvesh Raskutti
24
3
0
19 Nov 2021
Fast and Scalable Spike and Slab Variable Selection in High-Dimensional
  Gaussian Processes
Fast and Scalable Spike and Slab Variable Selection in High-Dimensional Gaussian Processes
Hugh Dance
Brooks Paige
GP
20
10
0
08 Nov 2021
Spatio-Temporal Variational Gaussian Processes
Spatio-Temporal Variational Gaussian Processes
Oliver Hamelijnck
William J. Wilkinson
Niki A. Loppi
Arno Solin
Theodoros Damoulas
AI4TS
19
31
0
02 Nov 2021
Variational Gaussian Processes: A Functional Analysis View
Variational Gaussian Processes: A Functional Analysis View
Veit Wild
George Wynne
GP
46
5
0
25 Oct 2021
Bayesian Meta-Learning Through Variational Gaussian Processes
Bayesian Meta-Learning Through Variational Gaussian Processes
Vivek Myers
Nikhil Sardana
BDL
UQCV
11
4
0
21 Oct 2021
A portfolio approach to massively parallel Bayesian optimization
A portfolio approach to massively parallel Bayesian optimization
M. Binois
Nicholson T. Collier
J. Ozik
27
9
0
18 Oct 2021
Incremental Ensemble Gaussian Processes
Incremental Ensemble Gaussian Processes
Qin Lu
G. V. Karanikolas
G. Giannakis
53
24
0
13 Oct 2021
Molecular Energy Learning Using Alternative Blackbox Matrix-Matrix
  Multiplication Algorithm for Exact Gaussian Process
Molecular Energy Learning Using Alternative Blackbox Matrix-Matrix Multiplication Algorithm for Exact Gaussian Process
Jiace Sun
Lixue Cheng
Thomas F. Miller
34
3
0
20 Sep 2021
Uncertainty Quantification and Experimental Design for Large-Scale
  Linear Inverse Problems under Gaussian Process Priors
Uncertainty Quantification and Experimental Design for Large-Scale Linear Inverse Problems under Gaussian Process Priors
Cédric Travelletti
D. Ginsbourger
N. Linde
30
3
0
08 Sep 2021
Uncertainty-Aware Time-to-Event Prediction using Deep Kernel Accelerated
  Failure Time Models
Uncertainty-Aware Time-to-Event Prediction using Deep Kernel Accelerated Failure Time Models
Zhiliang Wu
Yinchong Yang
Peter A. Fasching
Volker Tresp
BDL
21
10
0
26 Jul 2021
Preconditioning for Scalable Gaussian Process Hyperparameter
  Optimization
Preconditioning for Scalable Gaussian Process Hyperparameter Optimization
Jonathan Wenger
Geoff Pleiss
Philipp Hennig
John P. Cunningham
Jacob R. Gardner
22
24
0
01 Jul 2021
Bayesian Optimization with High-Dimensional Outputs
Bayesian Optimization with High-Dimensional Outputs
Wesley J. Maddox
Maximilian Balandat
A. Wilson
E. Bakshy
UQCV
24
50
0
24 Jun 2021
SKIing on Simplices: Kernel Interpolation on the Permutohedral Lattice
  for Scalable Gaussian Processes
SKIing on Simplices: Kernel Interpolation on the Permutohedral Lattice for Scalable Gaussian Processes
Sanyam Kapoor
Marc Finzi
Ke Alexander Wang
A. Wilson
41
11
0
12 Jun 2021
Scalable Variational Gaussian Processes via Harmonic Kernel
  Decomposition
Scalable Variational Gaussian Processes via Harmonic Kernel Decomposition
Shengyang Sun
Jiaxin Shi
A. Wilson
Roger C. Grosse
BDL
17
6
0
10 Jun 2021
GP-ConvCNP: Better Generalization for Convolutional Conditional Neural
  Processes on Time Series Data
GP-ConvCNP: Better Generalization for Convolutional Conditional Neural Processes on Time Series Data
Jens Petersen
Gregor Koehler
David Zimmerer
Fabian Isensee
Paul F. Jäger
Klaus H. Maier-Hein
BDL
AI4TS
31
3
0
09 Jun 2021
The Fast Kernel Transform
The Fast Kernel Transform
J. Ryan
Sebastian Ament
Carla P. Gomes
Anil Damle
18
8
0
08 Jun 2021
Scalable Cross Validation Losses for Gaussian Process Models
Scalable Cross Validation Losses for Gaussian Process Models
M. Jankowiak
Geoff Pleiss
26
6
0
24 May 2021
Understanding Uncertainty in Bayesian Deep Learning
Understanding Uncertainty in Bayesian Deep Learning
Cooper Lorsung
BDL
UQCV
12
0
0
21 May 2021
Deep Neural Networks as Point Estimates for Deep Gaussian Processes
Deep Neural Networks as Point Estimates for Deep Gaussian Processes
Vincent Dutordoir
J. Hensman
Mark van der Wilk
Carl Henrik Ek
Zoubin Ghahramani
N. Durrande
BDL
UQCV
18
30
0
10 May 2021
Deep Learning for Bayesian Optimization of Scientific Problems with
  High-Dimensional Structure
Deep Learning for Bayesian Optimization of Scientific Problems with High-Dimensional Structure
Samuel Kim
Peter Y. Lu
Charlotte Loh
Jamie Smith
Jasper Snoek
M. Soljavcić
BDL
AI4CE
148
17
0
23 Apr 2021
Data-Driven Robust Barrier Functions for Safe, Long-Term Operation
Data-Driven Robust Barrier Functions for Safe, Long-Term Operation
Y. Emam
Paul Glotfelter
S. Wilson
Gennaro Notomista
M. Egerstedt
13
25
0
15 Apr 2021
Affective Processes: stochastic modelling of temporal context for
  emotion and facial expression recognition
Affective Processes: stochastic modelling of temporal context for emotion and facial expression recognition
Enrique Sanchez
M. Tellamekala
M. Valstar
Georgios Tzimiropoulos
CVBM
40
28
0
24 Mar 2021
Kernel Interpolation for Scalable Online Gaussian Processes
Kernel Interpolation for Scalable Online Gaussian Processes
Samuel Stanton
Wesley J. Maddox
Ian A. Delbridge
A. Wilson
GP
14
28
0
02 Mar 2021
Generative Particle Variational Inference via Estimation of Functional
  Gradients
Generative Particle Variational Inference via Estimation of Functional Gradients
Neale Ratzlaff
Qinxun Bai
Fuxin Li
Wenyuan Xu
BDL
DRL
23
0
0
01 Mar 2021
Hierarchical Inducing Point Gaussian Process for Inter-domain
  Observations
Hierarchical Inducing Point Gaussian Process for Inter-domain Observations
Luhuan Wu
Andrew C. Miller
Lauren Anderson
Geoff Pleiss
David M. Blei
John P. Cunningham
27
8
0
28 Feb 2021
Tighter Bounds on the Log Marginal Likelihood of Gaussian Process
  Regression Using Conjugate Gradients
Tighter Bounds on the Log Marginal Likelihood of Gaussian Process Regression Using Conjugate Gradients
A. Artemev
David R. Burt
Mark van der Wilk
23
18
0
16 Feb 2021
Healing Products of Gaussian Processes
Healing Products of Gaussian Processes
Samuel N. Cohen
R. Mbuvha
T. Marwala
M. Deisenroth
GP
21
0
0
14 Feb 2021
Appearance of Random Matrix Theory in Deep Learning
Appearance of Random Matrix Theory in Deep Learning
Nicholas P. Baskerville
Diego Granziol
J. Keating
15
11
0
12 Feb 2021
Bias-Free Scalable Gaussian Processes via Randomized Truncations
Bias-Free Scalable Gaussian Processes via Randomized Truncations
Andres Potapczynski
Luhuan Wu
D. Biderman
Geoff Pleiss
John P. Cunningham
26
19
0
12 Feb 2021
Interpolating Classifiers Make Few Mistakes
Interpolating Classifiers Make Few Mistakes
Tengyuan Liang
Benjamin Recht
14
28
0
28 Jan 2021
Opponent Learning Awareness and Modelling in Multi-Objective Normal Form
  Games
Opponent Learning Awareness and Modelling in Multi-Objective Normal Form Games
Roxana Rădulescu
T. Verstraeten
Yijie Zhang
Patrick Mannion
D. Roijers
A. Nowé
25
14
0
14 Nov 2020
Previous
123
Next