Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1903.08114
Cited By
Exact Gaussian Processes on a Million Data Points
19 March 2019
Ke Alexander Wang
Geoff Pleiss
Jacob R. Gardner
Stephen Tyree
Kilian Q. Weinberger
A. Wilson
GP
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Exact Gaussian Processes on a Million Data Points"
42 / 142 papers shown
Title
Pathwise Conditioning of Gaussian Processes
James T. Wilson
Viacheslav Borovitskiy
Alexander Terenin
P. Mostowsky
M. Deisenroth
18
58
0
08 Nov 2020
Kernel Dependence Network
Chieh-Tsai Wu
A. Masoomi
Arthur Gretton
Jennifer Dy
16
0
0
04 Nov 2020
Sample-efficient reinforcement learning using deep Gaussian processes
Charles W. L. Gadd
Markus Heinonen
Harri Lähdesmäki
Samuel Kaski
GP
BDL
31
4
0
02 Nov 2020
Random Fourier Features based SLAM
Yermek Kapushev
Anastasia Kishkun
Gonzalo Ferrer
Evgeny Burnaev
GP
8
4
0
01 Nov 2020
Scalable Bayesian Optimization with Sparse Gaussian Process Models
Ang Yang
16
0
0
26 Oct 2020
Modulating Scalable Gaussian Processes for Expressive Statistical Learning
Haitao Liu
Yew-Soon Ong
Xiaomo Jiang
Xiaofang Wang
18
4
0
29 Aug 2020
Locally induced Gaussian processes for large-scale simulation experiments
D. Cole
R. Christianson
R. Gramacy
21
21
0
28 Aug 2020
Parametric Copula-GP model for analyzing multidimensional neuronal and behavioral relationships
N. Kudryashova
Theoklitos Amvrosiadis
Nathalie Dupuy
Nathalie L Rochefort
A. Onken
19
5
0
03 Aug 2020
Ordinal Regression with Fenton-Wilkinson Order Statistics: A Case Study of an Orienteering Race
J. Paakkonen
7
0
0
14 Jul 2020
State Space Expectation Propagation: Efficient Inference Schemes for Temporal Gaussian Processes
William J. Wilkinson
Paul E. Chang
Michael Riis Andersen
Arno Solin
16
13
0
12 Jul 2020
Data-Driven Discovery of Molecular Photoswitches with Multioutput Gaussian Processes
Ryan-Rhys Griffiths
Jake L. Greenfield
Aditya R. Thawani
Arian R. Jamasb
Henry B. Moss
Anthony Bourached
Penelope Jones
William McCorkindale
Alexander A. Aldrick
Matthew J. Fuchter Alpha A. Lee
32
13
0
28 Jun 2020
Uncertainty-Aware (UNA) Bases for Deep Bayesian Regression Using Multi-Headed Auxiliary Networks
Sujay Thakur
Cooper Lorsung
Yaniv Yacoby
Finale Doshi-Velez
Weiwei Pan
BDL
UQCV
33
4
0
21 Jun 2020
Fast Matrix Square Roots with Applications to Gaussian Processes and Bayesian Optimization
Geoff Pleiss
M. Jankowiak
David Eriksson
Anil Damle
Jacob R. Gardner
19
43
0
19 Jun 2020
Auxiliary-task learning for geographic data with autoregressive embeddings
Konstantin Klemmer
Daniel B. Neill
27
13
0
18 Jun 2020
Kernel methods through the roof: handling billions of points efficiently
Giacomo Meanti
Luigi Carratino
Lorenzo Rosasco
Alessandro Rudi
33
114
0
18 Jun 2020
Real-Time Regression with Dividing Local Gaussian Processes
Armin Lederer
Alejandro Jose Ordóñez Conejo
K. Maier
Wenxin Xiao
Jonas Umlauft
Sandra Hirche
11
11
0
16 Jun 2020
Learning Rates as a Function of Batch Size: A Random Matrix Theory Approach to Neural Network Training
Diego Granziol
S. Zohren
Stephen J. Roberts
ODL
37
49
0
16 Jun 2020
The Statistical Cost of Robust Kernel Hyperparameter Tuning
R. A. Meyer
Christopher Musco
16
2
0
14 Jun 2020
Sparse Gaussian Processes via Parametric Families of Compactly-supported Kernels
Jarred Barber
GP
14
2
0
05 Jun 2020
Autonomous Materials Discovery Driven by Gaussian Process Regression with Inhomogeneous Measurement Noise and Anisotropic Kernels
M. Noack
G. Doerk
Ruipeng Li
Jason K. Streit
R. Vaia
Kevin Yager
M. Fukuto
18
70
0
03 Jun 2020
Longitudinal Deep Kernel Gaussian Process Regression
Junjie Liang
Yanting Wu
Dongkuan Xu
Vasant Honavar
BDL
11
8
0
24 May 2020
Beyond the Mean-Field: Structured Deep Gaussian Processes Improve the Predictive Uncertainties
J. Lindinger
David Reeb
C. Lippert
Barbara Rakitsch
BDL
UQCV
25
8
0
22 May 2020
Incorporating structured assumptions with probabilistic graphical models in fMRI data analysis
M. Cai
Michael Shvartsman
Anqi Wu
Hejia Zhang
Xia Zhu
AI4CE
35
12
0
11 May 2020
Reinforcement Learning via Gaussian Processes with Neural Network Dual Kernels
I. Goumiri
Benjamin W. Priest
M. Schneider
GP
BDL
8
6
0
10 Apr 2020
On Negative Transfer and Structure of Latent Functions in Multi-output Gaussian Processes
Moyan Li
Raed Al Kontar
12
6
0
06 Apr 2020
Linear-time inference for Gaussian Processes on one dimension
Jackson Loper
David M. Blei
John P. Cunningham
Liam Paninski
8
16
0
11 Mar 2020
Neural Kernels Without Tangents
Vaishaal Shankar
Alex Fang
Wenshuo Guo
Sara Fridovich-Keil
Ludwig Schmidt
Jonathan Ragan-Kelley
Benjamin Recht
25
90
0
04 Mar 2020
Efficiently Sampling Functions from Gaussian Process Posteriors
James T. Wilson
Viacheslav Borovitskiy
Alexander Terenin
P. Mostowsky
M. Deisenroth
14
163
0
21 Feb 2020
Weakly-supervised Multi-output Regression via Correlated Gaussian Processes
Seokhyun Chung
Raed Al Kontar
Zhenke Wu
21
3
0
19 Feb 2020
π
π
π
VAE: a stochastic process prior for Bayesian deep learning with MCMC
Swapnil Mishra
Seth Flaxman
Tresnia Berah
Harrison Zhu
Mikko S. Pakkanen
Samir Bhatt
BDL
26
3
0
17 Feb 2020
Estimating Latent Demand of Shared Mobility through Censored Gaussian Processes
Daniele Gammelli
Inon Peled
Filipe Rodrigues
Dario Pacino
H. A. Kurtaran
Francisco Câmara Pereira
20
48
0
21 Jan 2020
Bayesian task embedding for few-shot Bayesian optimization
Steven Atkinson
Sayan Ghosh
Natarajan Chennimalai-Kumar
Genghis Khan
Liping Wang
BDL
24
1
0
02 Jan 2020
Scalable Gaussian Process Regression for Kernels with a Non-Stationary Phase
J. Grasshoff
Alexandra Jankowski
P. Rostalski
19
3
0
25 Dec 2019
Fenton-Wilkinson Order Statistics and German Tanks: A Case Study of an Orienteering Relay Race
J. Paakkonen
11
0
0
10 Dec 2019
Gaussian Process Priors for View-Aware Inference
Wenshuai Zhao
Ari Heljakka
Arno Solin
BDL
23
1
0
06 Dec 2019
Parametric Gaussian Process Regressors
M. Jankowiak
Geoffrey Pleiss
Jacob R. Gardner
UQCV
30
5
0
16 Oct 2019
The Renyi Gaussian Process: Towards Improved Generalization
Xubo Yue
Raed Al Kontar
107
3
0
15 Oct 2019
Fast and Accurate Gaussian Kernel Ridge Regression Using Matrix Decompositions for Preconditioning
G. Shabat
Era Choshen
Dvir Ben-Or
Nadav Carmel
7
7
0
25 May 2019
Generalized Variational Inference: Three arguments for deriving new Posteriors
Jeremias Knoblauch
Jack Jewson
Theodoros Damoulas
DRL
BDL
39
105
0
03 Apr 2019
Change Surfaces for Expressive Multidimensional Changepoints and Counterfactual Prediction
William Herlands
Daniel B. Neill
H. Nickisch
A. Wilson
OOD
16
2
0
28 Oct 2018
Uncertainty in Neural Networks: Approximately Bayesian Ensembling
Tim Pearce
Felix Leibfried
Alexandra Brintrup
Mohamed H. Zaki
A. Neely
BDL
UQCV
20
192
0
12 Oct 2018
When Gaussian Process Meets Big Data: A Review of Scalable GPs
Haitao Liu
Yew-Soon Ong
Xiaobo Shen
Jianfei Cai
GP
33
681
0
03 Jul 2018
Previous
1
2
3