Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1905.00076
Cited By
Ensemble Distribution Distillation
30 April 2019
A. Malinin
Bruno Mlodozeniec
Mark J. F. Gales
UQCV
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Ensemble Distribution Distillation"
42 / 42 papers shown
Title
Quantifying Knowledge Distillation Using Partial Information Decomposition
Pasan Dissanayake
Faisal Hamman
Barproda Halder
Ilia Sucholutsky
Qiuyi Zhang
Sanghamitra Dutta
36
0
0
12 Nov 2024
Ctrl-U: Robust Conditional Image Generation via Uncertainty-aware Reward Modeling
Guiyu Zhang
Huan-ang Gao
Zijian Jiang
Hao Zhao
Zhedong Zheng
EGVM
44
6
0
15 Oct 2024
Harnessing Uncertainty-aware Bounding Boxes for Unsupervised 3D Object Detection
A. Benfenati
P. Causin
Hang Yu
Zhedong Zheng
3DPC
42
2
0
01 Aug 2024
Learning to Project for Cross-Task Knowledge Distillation
Dylan Auty
Roy Miles
Benedikt Kolbeinsson
K. Mikolajczyk
40
0
0
21 Mar 2024
Accuracy-Preserving Calibration via Statistical Modeling on Probability Simplex
Yasushi Esaki
Akihiro Nakamura
Keisuke Kawano
Ryoko Tokuhisa
Takuro Kutsuna
38
0
0
21 Feb 2024
Dynamic ensemble selection based on Deep Neural Network Uncertainty Estimation for Adversarial Robustness
Ruoxi Qin
Linyuan Wang
Xuehui Du
Xing-yuan Chen
Binghai Yan
AAML
24
0
0
01 Aug 2023
Function-Space Regularization for Deep Bayesian Classification
J. Lin
Joe Watson
Pascal Klink
Jan Peters
UQCV
BDL
35
1
0
12 Jul 2023
Tailored Multi-Organ Segmentation with Model Adaptation and Ensemble
Jiahua Dong
Guohua Cheng
Yue Zhang
Chengtao Peng
Yu Song
Ruofeng Tong
Lanfen Lin
Yen-Wei Chen
24
0
0
14 Apr 2023
Distilling Calibrated Student from an Uncalibrated Teacher
Ishan Mishra
Sethu Vamsi Krishna
Deepak Mishra
FedML
32
2
0
22 Feb 2023
Towards Inference Efficient Deep Ensemble Learning
Ziyue Li
Kan Ren
Yifan Yang
Xinyang Jiang
Yuqing Yang
Dongsheng Li
BDL
21
12
0
29 Jan 2023
TEDL: A Two-stage Evidential Deep Learning Method for Classification Uncertainty Quantification
Xue Li
Wei Shen
Denis Xavier Charles
UQCV
EDL
30
3
0
12 Sep 2022
Quantifying Aleatoric and Epistemic Uncertainty in Machine Learning: Are Conditional Entropy and Mutual Information Appropriate Measures?
Lisa Wimmer
Yusuf Sale
Paul Hofman
Bern Bischl
Eyke Hüllermeier
PER
UD
34
64
0
07 Sep 2022
An Impartial Take to the CNN vs Transformer Robustness Contest
Francesco Pinto
Philip H. S. Torr
P. Dokania
UQCV
AAML
22
48
0
22 Jul 2022
Latent Discriminant deterministic Uncertainty
Gianni Franchi
Xuanlong Yu
Andrei Bursuc
Emanuel Aldea
Séverine Dubuisson
David Filliat
UQCV
22
18
0
20 Jul 2022
Shifts 2.0: Extending The Dataset of Real Distributional Shifts
A. Malinin
A. Athanasopoulos
M. Barakovic
Meritxell Bach Cuadra
Mark J. F. Gales
...
Francesco La Rosa
Eli Sivena
V. Tsarsitalidis
Efi Tsompopoulou
E. Volf
OOD
22
28
0
30 Jun 2022
Functional Ensemble Distillation
Coby Penso
Idan Achituve
Ethan Fetaya
FedML
23
2
0
05 Jun 2022
Distributed Training for Deep Learning Models On An Edge Computing Network Using ShieldedReinforcement Learning
Tanmoy Sen
Haiying Shen
OffRL
11
5
0
01 Jun 2022
Simple Regularisation for Uncertainty-Aware Knowledge Distillation
Martin Ferianc
Miguel R. D. Rodrigues
UQCV
37
0
0
19 May 2022
Trusted Multi-View Classification with Dynamic Evidential Fusion
Zongbo Han
Changqing Zhang
H. Fu
Joey Tianyi Zhou
EDL
17
217
0
25 Apr 2022
Self-Distribution Distillation: Efficient Uncertainty Estimation
Yassir Fathullah
Mark J. F. Gales
UQCV
14
11
0
15 Mar 2022
Pitfalls of Epistemic Uncertainty Quantification through Loss Minimisation
Viktor Bengs
Eyke Hüllermeier
Willem Waegeman
EDL
UQCV
UD
16
36
0
11 Mar 2022
GradTail: Learning Long-Tailed Data Using Gradient-based Sample Weighting
Zhao Chen
Vincent Casser
Henrik Kretzschmar
Dragomir Anguelov
26
5
0
16 Jan 2022
Diversity Matters When Learning From Ensembles
G. Nam
Jongmin Yoon
Yoonho Lee
Juho Lee
UQCV
FedML
VLM
37
36
0
27 Oct 2021
Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classification
Maximilian Stadler
Bertrand Charpentier
Simon Geisler
Daniel Zügner
Stephan Günnemann
UQCV
BDL
28
80
0
26 Oct 2021
Deep Classifiers with Label Noise Modeling and Distance Awareness
Vincent Fortuin
Mark Collier
F. Wenzel
J. Allingham
J. Liu
Dustin Tran
Balaji Lakshminarayanan
Jesse Berent
Rodolphe Jenatton
E. Kokiopoulou
UQCV
26
11
0
06 Oct 2021
Uncertainty Measures in Neural Belief Tracking and the Effects on Dialogue Policy Performance
Carel van Niekerk
A. Malinin
Christian Geishauser
Michael Heck
Hsien-chin Lin
Nurul Lubis
Shutong Feng
Milica Gavsić
18
9
0
09 Sep 2021
Robust fine-tuning of zero-shot models
Mitchell Wortsman
Gabriel Ilharco
Jong Wook Kim
Mike Li
Simon Kornblith
...
Raphael Gontijo-Lopes
Hannaneh Hajishirzi
Ali Farhadi
Hongseok Namkoong
Ludwig Schmidt
VLM
23
688
0
04 Sep 2021
A Survey of Uncertainty in Deep Neural Networks
J. Gawlikowski
Cedrique Rovile Njieutcheu Tassi
Mohsin Ali
Jongseo Lee
Matthias Humt
...
R. Roscher
Muhammad Shahzad
Wen Yang
R. Bamler
Xiaoxiang Zhu
BDL
UQCV
OOD
30
1,109
0
07 Jul 2021
Repulsive Deep Ensembles are Bayesian
Francesco DÁngelo
Vincent Fortuin
UQCV
BDL
41
93
0
22 Jun 2021
Distilling a Powerful Student Model via Online Knowledge Distillation
Shaojie Li
Mingbao Lin
Yan Wang
Yongjian Wu
Yonghong Tian
Ling Shao
Rongrong Ji
FedML
25
46
0
26 Mar 2021
Posterior Meta-Replay for Continual Learning
Christian Henning
Maria R. Cervera
Francesco DÁngelo
J. Oswald
Regina Traber
Benjamin Ehret
Seijin Kobayashi
Benjamin Grewe
João Sacramento
CLL
BDL
51
54
0
01 Mar 2021
Deep Deterministic Uncertainty: A Simple Baseline
Jishnu Mukhoti
Andreas Kirsch
Joost R. van Amersfoort
Philip H. S. Torr
Y. Gal
UD
UQCV
PER
BDL
18
145
0
23 Feb 2021
Local Calibration: Metrics and Recalibration
Rachel Luo
Aadyot Bhatnagar
Yu Bai
Shengjia Zhao
Huan Wang
Caiming Xiong
Silvio Savarese
Stefano Ermon
Edward Schmerling
Marco Pavone
11
14
0
22 Feb 2021
DEUP: Direct Epistemic Uncertainty Prediction
Salem Lahlou
Moksh Jain
Hadi Nekoei
V. Butoi
Paul Bertin
Jarrid Rector-Brooks
Maksym Korablyov
Yoshua Bengio
PER
UQLM
UQCV
UD
200
81
0
16 Feb 2021
Densely Guided Knowledge Distillation using Multiple Teacher Assistants
Wonchul Son
Jaemin Na
Junyong Choi
Wonjun Hwang
20
110
0
18 Sep 2020
URSABench: Comprehensive Benchmarking of Approximate Bayesian Inference Methods for Deep Neural Networks
Meet P. Vadera
Adam D. Cobb
B. Jalaeian
Benjamin M. Marlin
BDL
UQCV
19
16
0
08 Jul 2020
Uncertainty in Gradient Boosting via Ensembles
Aleksei Ustimenko
Liudmila Prokhorenkova
A. Malinin
UQCV
15
94
0
18 Jun 2020
Posterior Network: Uncertainty Estimation without OOD Samples via Density-Based Pseudo-Counts
Bertrand Charpentier
Daniel Zügner
Stephan Günnemann
UQCV
UD
EDL
BDL
17
169
0
16 Jun 2020
Generalized Bayesian Posterior Expectation Distillation for Deep Neural Networks
Meet P. Vadera
B. Jalaeian
Benjamin M. Marlin
BDL
FedML
UQCV
17
20
0
16 May 2020
Generalized ODIN: Detecting Out-of-distribution Image without Learning from Out-of-distribution Data
Yen-Chang Hsu
Yilin Shen
Hongxia Jin
Z. Kira
OODD
22
559
0
26 Feb 2020
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
270
5,660
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
279
9,136
0
06 Jun 2015
1