Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
All Papers
0 / 0 papers shown
Title
Home
Papers
1906.04584
Cited By
v1
v2
v3
v4
v5 (latest)
Provably Robust Deep Learning via Adversarially Trained Smoothed Classifiers
Neural Information Processing Systems (NeurIPS), 2019
9 June 2019
Hadi Salman
Greg Yang
Jungshian Li
Pengchuan Zhang
Huan Zhang
Ilya P. Razenshteyn
Sébastien Bubeck
AAML
Re-assign community
ArXiv (abs)
PDF
HTML
Github (225★)
Papers citing
"Provably Robust Deep Learning via Adversarially Trained Smoothed Classifiers"
50 / 390 papers shown
Title
Dynamic Defense Approach for Adversarial Robustness in Deep Neural Networks via Stochastic Ensemble Smoothed Model
Ruoxi Qin
Linyuan Wang
Xing-yuan Chen
Xuehui Du
Bin Yan
AAML
110
6
0
06 May 2021
Random Noise Defense Against Query-Based Black-Box Attacks
Neural Information Processing Systems (NeurIPS), 2021
Zeyu Qin
Yanbo Fan
H. Zha
Baoyuan Wu
AAML
208
68
0
23 Apr 2021
Provable Robustness of Adversarial Training for Learning Halfspaces with Noise
International Conference on Machine Learning (ICML), 2021
Difan Zou
Spencer Frei
Quanquan Gu
135
14
0
19 Apr 2021
Robust Learning Meets Generative Models: Can Proxy Distributions Improve Adversarial Robustness?
International Conference on Learning Representations (ICLR), 2021
Vikash Sehwag
Saeed Mahloujifar
Tinashe Handina
Sihui Dai
Chong Xiang
M. Chiang
Prateek Mittal
OOD
202
144
0
19 Apr 2021
Simpler Certified Radius Maximization by Propagating Covariances
Computer Vision and Pattern Recognition (CVPR), 2021
Xingjian Zhen
Rudrasis Chakraborty
Vikas Singh
AAML
94
5
0
13 Apr 2021
Fast Certified Robust Training with Short Warmup
Neural Information Processing Systems (NeurIPS), 2021
Zhouxing Shi
Yihan Wang
Huan Zhang
Jinfeng Yi
Cho-Jui Hsieh
AAML
268
66
0
31 Mar 2021
Robustness Certification for Point Cloud Models
IEEE International Conference on Computer Vision (ICCV), 2021
Tobias Lorenz
Anian Ruoss
Mislav Balunović
Gagandeep Singh
Martin Vechev
3DPC
230
29
0
30 Mar 2021
Certifiably-Robust Federated Adversarial Learning via Randomized Smoothing
IEEE International Conference on Mobile Adhoc and Sensor Systems (MASS), 2021
Cheng Chen
B. Kailkhura
R. Goldhahn
Yi Zhou
AAML
FedML
83
17
0
30 Mar 2021
Boosting Adversarial Transferability through Enhanced Momentum
British Machine Vision Conference (BMVC), 2021
Xiaosen Wang
Jiadong Lin
Han Hu
Jingdong Wang
Kun He
AAML
187
93
0
19 Mar 2021
Understanding Generalization in Adversarial Training via the Bias-Variance Decomposition
Yaodong Yu
Zitong Yang
Guang Cheng
Jacob Steinhardt
Yi-An Ma
238
19
0
17 Mar 2021
Improved, Deterministic Smoothing for L_1 Certified Robustness
International Conference on Machine Learning (ICML), 2021
Alexander Levine
Soheil Feizi
AAML
231
47
0
17 Mar 2021
Constant Random Perturbations Provide Adversarial Robustness with Minimal Effect on Accuracy
Bronya R. Chernyak
Bhiksha Raj
Tamir Hazan
Joseph Keshet
AAML
103
2
0
15 Mar 2021
Adversarial Training is Not Ready for Robot Learning
IEEE International Conference on Robotics and Automation (ICRA), 2021
Mathias Lechner
Ramin Hasani
Radu Grosu
Daniela Rus
T. Henzinger
AAML
156
34
0
15 Mar 2021
Constrained Learning with Non-Convex Losses
IEEE Transactions on Information Theory (IEEE Trans. Inf. Theory), 2021
Luiz F. O. Chamon
Santiago Paternain
Miguel Calvo-Fullana
Alejandro Ribeiro
262
52
0
08 Mar 2021
Insta-RS: Instance-wise Randomized Smoothing for Improved Robustness and Accuracy
Chong Chen
Kezhi Kong
Peihong Yu
J. Luque
Tom Goldstein
Furong Huang
AAML
236
8
0
07 Mar 2021
PRIMA: General and Precise Neural Network Certification via Scalable Convex Hull Approximations
Mark Niklas Muller
Gleb Makarchuk
Gagandeep Singh
Markus Püschel
Martin Vechev
258
109
0
05 Mar 2021
Towards Evaluating the Robustness of Deep Diagnostic Models by Adversarial Attack
Mengting Xu
Tao Zhang
Zhongnian Li
Mingxia Liu
Daoqiang Zhang
AAML
OOD
MedIm
151
51
0
05 Mar 2021
PointGuard: Provably Robust 3D Point Cloud Classification
Computer Vision and Pattern Recognition (CVPR), 2021
Hongbin Liu
Jinyuan Jia
Neil Zhenqiang Gong
3DPC
265
84
0
04 Mar 2021
A Multiclass Boosting Framework for Achieving Fast and Provable Adversarial Robustness
Jacob D. Abernethy
Pranjal Awasthi
Satyen Kale
AAML
145
6
0
01 Mar 2021
On the robustness of randomized classifiers to adversarial examples
Machine-mediated learning (ML), 2021
Rafael Pinot
Laurent Meunier
Florian Yger
Cédric Gouy-Pailler
Y. Chevaleyre
Jamal Atif
AAML
137
15
0
22 Feb 2021
A PAC-Bayes Analysis of Adversarial Robustness
Neural Information Processing Systems (NeurIPS), 2021
Paul Viallard
Guillaume Vidot
Amaury Habrard
Emilie Morvant
AAML
135
16
0
19 Feb 2021
Center Smoothing: Certified Robustness for Networks with Structured Outputs
Neural Information Processing Systems (NeurIPS), 2021
Aounon Kumar
Tom Goldstein
OOD
AAML
UQCV
205
20
0
19 Feb 2021
Globally-Robust Neural Networks
International Conference on Machine Learning (ICML), 2021
Klas Leino
Zifan Wang
Matt Fredrikson
AAML
OOD
264
144
0
16 Feb 2021
Certifiably Robust Variational Autoencoders
International Conference on Artificial Intelligence and Statistics (AISTATS), 2021
Ben Barrett
A. Camuto
M. Willetts
Tom Rainforth
AAML
DRL
193
16
0
15 Feb 2021
On the Paradox of Certified Training
Nikola Jovanović
Mislav Balunović
Maximilian Baader
Martin Vechev
OOD
233
14
0
12 Feb 2021
Towards Certifying L-infinity Robustness using Neural Networks with L-inf-dist Neurons
International Conference on Machine Learning (ICML), 2021
Bohang Zhang
Tianle Cai
Zhou Lu
Di He
Liwei Wang
OOD
239
56
0
10 Feb 2021
Towards Bridging the gap between Empirical and Certified Robustness against Adversarial Examples
Jay Nandy
Sudipan Saha
Wynne Hsu
Yang Deng
Xiaosu Zhu
AAML
219
4
0
09 Feb 2021
DetectorGuard: Provably Securing Object Detectors against Localized Patch Hiding Attacks
Conference on Computer and Communications Security (CCS), 2021
Chong Xiang
Prateek Mittal
AAML
216
69
0
05 Feb 2021
Adversarial Training Makes Weight Loss Landscape Sharper in Logistic Regression
Masanori Yamada
Sekitoshi Kanai
Tomoharu Iwata
Tomokatsu Takahashi
Yuki Yamanaka
Hiroshi Takahashi
Atsutoshi Kumagai
AAML
214
10
0
05 Feb 2021
Adversarially Robust Learning with Unknown Perturbation Sets
Annual Conference Computational Learning Theory (COLT), 2021
Omar Montasser
Steve Hanneke
Nathan Srebro
AAML
151
28
0
03 Feb 2021
Admix: Enhancing the Transferability of Adversarial Attacks
IEEE International Conference on Computer Vision (ICCV), 2021
Xiaosen Wang
Xu He
Jingdong Wang
Kun He
AAML
363
250
0
31 Jan 2021
Adaptive Verifiable Training Using Pairwise Class Similarity
AAAI Conference on Artificial Intelligence (AAAI), 2020
Shiqi Wang
Kevin Eykholt
Taesung Lee
Jiyong Jang
Ian Molloy
OOD
100
1
0
14 Dec 2020
Data-Dependent Randomized Smoothing
Motasem Alfarra
Adel Bibi
Juil Sock
Guohao Li
UQCV
288
40
0
08 Dec 2020
Learning to Separate Clusters of Adversarial Representations for Robust Adversarial Detection
Byunggill Joe
Jihun Hamm
Sung Ju Hwang
Sooel Son
I. Shin
AAML
OOD
157
0
0
07 Dec 2020
Advocating for Multiple Defense Strategies against Adversarial Examples
Alexandre Araujo
Laurent Meunier
Rafael Pinot
Benjamin Négrevergne
AAML
115
10
0
04 Dec 2020
How Robust are Randomized Smoothing based Defenses to Data Poisoning?
Computer Vision and Pattern Recognition (CVPR), 2020
Akshay Mehra
B. Kailkhura
Pin-Yu Chen
Jihun Hamm
OOD
AAML
267
33
0
02 Dec 2020
Adversarial Robustness Across Representation Spaces
Computer Vision and Pattern Recognition (CVPR), 2020
Pranjal Awasthi
George Yu
Chun-Sung Ferng
Andrew Tomkins
Da-Cheng Juan
OOD
AAML
155
11
0
01 Dec 2020
Deterministic Certification to Adversarial Attacks via Bernstein Polynomial Approximation
Ching-Chia Kao
Jhe-Bang Ko
Chun-Shien Lu
AAML
162
1
0
28 Nov 2020
A Neuro-Inspired Autoencoding Defense Against Adversarial Perturbations
Can Bakiskan
Metehan Cekic
Ahmet Dundar Sezer
Upamanyu Madhow
AAML
103
0
0
21 Nov 2020
Shaping Deep Feature Space towards Gaussian Mixture for Visual Classification
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2020
Weitao Wan
Jiansheng Chen
Cheng Yu
Tong Wu
Yuanyi Zhong
Ming-Hsuan Yang
116
9
0
18 Nov 2020
Ensemble of Models Trained by Key-based Transformed Images for Adversarially Robust Defense Against Black-box Attacks
Maungmaung Aprilpyone
Hitoshi Kiya
FedML
126
1
0
16 Nov 2020
Almost Tight L0-norm Certified Robustness of Top-k Predictions against Adversarial Perturbations
International Conference on Learning Representations (ICLR), 2020
Jinyuan Jia
Binghui Wang
Xiaoyu Cao
Hongbin Liu
Neil Zhenqiang Gong
185
26
0
15 Nov 2020
Asymptotic Behavior of Adversarial Training in Binary Classification
Hossein Taheri
Ramtin Pedarsani
Christos Thrampoulidis
AAML
269
16
0
26 Oct 2020
Certified Distributional Robustness on Smoothed Classifiers
Jungang Yang
Liyao Xiang
Pengzhi Chu
Yukun Wang
Cheng Zhou
Xinbing Wang
AAML
140
1
0
21 Oct 2020
Tight Second-Order Certificates for Randomized Smoothing
Alexander Levine
Aounon Kumar
Thomas A. Goldstein
Soheil Feizi
AAML
107
16
0
20 Oct 2020
Optimism in the Face of Adversity: Understanding and Improving Deep Learning through Adversarial Robustness
Proceedings of the IEEE (Proc. IEEE), 2020
Guillermo Ortiz-Jiménez
Apostolos Modas
Seyed-Mohsen Moosavi-Dezfooli
P. Frossard
AAML
320
50
0
19 Oct 2020
Poisoned classifiers are not only backdoored, they are fundamentally broken
Mingjie Sun
Siddhant Agarwal
J. Zico Kolter
241
26
0
18 Oct 2020
Higher-Order Certification for Randomized Smoothing
Jeet Mohapatra
Ching-Yun Ko
Tsui-Wei Weng
Pin-Yu Chen
Sijia Liu
Luca Daniel
AAML
174
47
0
13 Oct 2020
Uncovering the Limits of Adversarial Training against Norm-Bounded Adversarial Examples
Sven Gowal
Chongli Qin
J. Uesato
Timothy A. Mann
Pushmeet Kohli
AAML
407
357
0
07 Oct 2020
Adversarial Boot Camp: label free certified robustness in one epoch
Ryan Campbell
Chris Finlay
Adam M. Oberman
AAML
99
0
0
05 Oct 2020
Previous
1
2
3
4
5
6
7
8
Next