Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1909.12180
Cited By
Towards neural networks that provably know when they don't know
26 September 2019
Alexander Meinke
Matthias Hein
OODD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Towards neural networks that provably know when they don't know"
50 / 91 papers shown
Title
Open-set Anomaly Segmentation in Complex Scenarios
Song Xia
Yi Yu
Henghui Ding
Wenhan Yang
S. Liu
Alex C. Kot
Xudong Jiang
DiffM
50
0
0
28 Apr 2025
Look Around and Find Out: OOD Detection with Relative Angles
Berker Demirel
Marco Fumero
Francesco Locatello
29
0
0
06 Oct 2024
Forte : Finding Outliers with Representation Typicality Estimation
Debargha Ganguly
Warren Morningstar
A. Yu
Vipin Chaudhary
OODD
39
0
0
02 Oct 2024
Your Classifier Can Be Secretly a Likelihood-Based OOD Detector
Jirayu Burapacheep
Yixuan Li
OODD
32
3
0
09 Aug 2024
When and How Does In-Distribution Label Help Out-of-Distribution Detection?
Xuefeng Du
Yiyou Sun
Yixuan Li
27
7
0
28 May 2024
Adaptive Catalyst Discovery Using Multicriteria Bayesian Optimization with Representation Learning
Jie Chen
Pengfei Ou
Yuxin Chang
Hengrui Zhang
Xiao-Yan Li
E. H. Sargent
Wei Chen
30
0
0
18 Apr 2024
Out-of-Distribution Data: An Acquaintance of Adversarial Examples -- A Survey
Naveen Karunanayake
Ravin Gunawardena
Suranga Seneviratne
Sanjay Chawla
OOD
38
5
0
08 Apr 2024
Hyperbolic Metric Learning for Visual Outlier Detection
Alvaro Gonzalez-Jimenez
Simone Lionetti
Dena Bazazian
Philippe Gottfrois
Fabian Gröger
M. Pouly
A. Navarini
51
1
0
22 Mar 2024
How Does Unlabeled Data Provably Help Out-of-Distribution Detection?
Xuefeng Du
Zhen Fang
Ilias Diakonikolas
Yixuan Li
OODD
41
27
0
05 Feb 2024
How to Overcome Curse-of-Dimensionality for Out-of-Distribution Detection?
Soumya Suvra Ghosal
Yiyou Sun
Yixuan Li
OODD
22
10
0
22 Dec 2023
EAT: Towards Long-Tailed Out-of-Distribution Detection
Tong Wei
Bo-Lin Wang
Min-Ling Zhang
OODD
18
14
0
14 Dec 2023
ID-like Prompt Learning for Few-Shot Out-of-Distribution Detection
Yichen Bai
Zongbo Han
Changqing Zhang
Bing Cao
Xiaoheng Jiang
Qinghua Hu
OODD
41
18
0
26 Nov 2023
RankFeat&RankWeight: Rank-1 Feature/Weight Removal for Out-of-distribution Detection
Yue Song
N. Sebe
Wei Wang
OODD
24
1
0
23 Nov 2023
Incremental Object-Based Novelty Detection with Feedback Loop
Simone Caldarella
Elisa Ricci
Rahaf Aljundi
26
0
0
15 Nov 2023
Preventing Arbitrarily High Confidence on Far-Away Data in Point-Estimated Discriminative Neural Networks
Ahmad Rashid
Serena Hacker
Guojun Zhang
Agustinus Kristiadi
Pascal Poupart
OODD
23
0
0
07 Nov 2023
Dream the Impossible: Outlier Imagination with Diffusion Models
Xuefeng Du
Yiyou Sun
Xiaojin Zhu
Yixuan Li
20
53
0
23 Sep 2023
Provable Dynamic Fusion for Low-Quality Multimodal Data
Qingyang Zhang
Haitao Wu
Changqing Zhang
Qinghua Hu
H. Fu
Joey Tianyi Zhou
Xi Peng
34
55
0
03 Jun 2023
DOS: Diverse Outlier Sampling for Out-of-Distribution Detection
Wenyu Jiang
Hao Cheng
Mingcai Chen
Chongjun Wang
Hongxin Wei
OOD
OODD
24
9
0
03 Jun 2023
Diffusion Denoised Smoothing for Certified and Adversarial Robust Out-Of-Distribution Detection
Nicola Franco
Daniel Korth
J. Lorenz
Karsten Roscher
Stephan Guennemann
26
5
0
27 Mar 2023
AUTO: Adaptive Outlier Optimization for Online Test-Time OOD Detection
Puning Yang
Jian Liang
Jie Cao
R. He
27
12
0
22 Mar 2023
Non-Parametric Outlier Synthesis
Leitian Tao
Xuefeng Du
Xiaojin Zhu
Yixuan Li
OODD
17
98
0
06 Mar 2023
DeepLens: Interactive Out-of-distribution Data Detection in NLP Models
D. Song
Zhijie Wang
Yuheng Huang
Lei Ma
Tianyi Zhang
16
4
0
02 Mar 2023
Density-Softmax: Efficient Test-time Model for Uncertainty Estimation and Robustness under Distribution Shifts
H. Bui
Anqi Liu
OOD
UQCV
11
6
0
13 Feb 2023
Two Video Data Sets for Tracking and Retrieval of Out of Distribution Objects
Kira Maag
Robin Shing Moon Chan
Svenja Uhlemeyer
K. Kowol
Hanno Gottschalk
30
19
0
05 Oct 2022
On Attacking Out-Domain Uncertainty Estimation in Deep Neural Networks
Huimin Zeng
Zhenrui Yue
Yang Zhang
Ziyi Kou
Lanyu Shang
Dong Wang
OOD
AAML
27
7
0
03 Oct 2022
Understanding Open-Set Recognition by Jacobian Norm and Inter-Class Separation
Jaewoo Park
Hojin Park
Eunju Jeong
Andrew Beng Jin Teoh
19
5
0
23 Sep 2022
Evaluating Out-of-Distribution Detectors Through Adversarial Generation of Outliers
Sangwoong Yoon
Jinwon Choi
Yonghyeon Lee
Yung-Kyun Noh
Frank C. Park
OODD
13
1
0
20 Aug 2022
Partial and Asymmetric Contrastive Learning for Out-of-Distribution Detection in Long-Tailed Recognition
Haotao Wang
Aston Zhang
Yi Zhu
Shuai Zheng
Mu Li
Alexander J. Smola
Zhangyang Wang
OODD
138
48
0
04 Jul 2022
POEM: Out-of-Distribution Detection with Posterior Sampling
Yifei Ming
Ying Fan
Yixuan Li
OODD
25
113
0
28 Jun 2022
Breaking Down Out-of-Distribution Detection: Many Methods Based on OOD Training Data Estimate a Combination of the Same Core Quantities
Julian Bitterwolf
Alexander Meinke
Maximilian Augustin
Matthias Hein
OODD
13
25
0
20 Jun 2022
Test-Time Adaptation for Visual Document Understanding
Sayna Ebrahimi
Sercan Ö. Arik
Tomas Pfister
OOD
31
6
0
15 Jun 2022
Disentangling Epistemic and Aleatoric Uncertainty in Reinforcement Learning
Bertrand Charpentier
Ransalu Senanayake
Mykel Kochenderfer
Stephan Günnemann
PER
UD
45
24
0
03 Jun 2022
Uncertainty Quantification and Resource-Demanding Computer Vision Applications of Deep Learning
Julian Burghoff
Robin Shing Moon Chan
Hanno Gottschalk
Annika Muetze
Tobias Riedlinger
Matthias Rottmann
Marius Schubert
BDL
21
0
0
30 May 2022
A Simple Approach to Improve Single-Model Deep Uncertainty via Distance-Awareness
J. Liu
Shreyas Padhy
Jie Jessie Ren
Zi Lin
Yeming Wen
Ghassen Jerfel
Zachary Nado
Jasper Snoek
Dustin Tran
Balaji Lakshminarayanan
UQCV
BDL
16
48
0
01 May 2022
Out-of-Distribution Detection with Deep Nearest Neighbors
Yiyou Sun
Yifei Ming
Xiaojin Zhu
Yixuan Li
OODD
19
487
0
13 Apr 2022
Accelerated Design and Deployment of Low-Carbon Concrete for Data Centers
Xiou Ge
Richard Goodwin
Haizi Yu
Pablo Romero
Omar Abdelrahman
Amruta Sudhalkar
Julius Kusuma
Ryan Cialdella
Nakul Garg
L. Varshney
17
10
0
11 Apr 2022
Detecting and Learning the Unknown in Semantic Segmentation
Robin Shing Moon Chan
Svenja Uhlemeyer
Matthias Rottmann
Hanno Gottschalk
UQCV
17
5
0
17 Feb 2022
Accountability in an Algorithmic Society: Relationality, Responsibility, and Robustness in Machine Learning
A. Feder Cooper
Emanuel Moss
Benjamin Laufer
Helen Nissenbaum
MLAU
24
85
0
10 Feb 2022
The Unreasonable Effectiveness of Random Pruning: Return of the Most Naive Baseline for Sparse Training
Shiwei Liu
Tianlong Chen
Xiaohan Chen
Li Shen
D. Mocanu
Zhangyang Wang
Mykola Pechenizkiy
11
106
0
05 Feb 2022
Explanatory Learning: Beyond Empiricism in Neural Networks
Antonio Norelli
Giorgio Mariani
Luca Moschella
Andrea Santilli
Giambattista Parascandolo
Simone Melzi
Emanuele Rodolà
14
2
0
25 Jan 2022
iDECODe: In-distribution Equivariance for Conformal Out-of-distribution Detection
R. Kaur
Susmit Jha
Anirban Roy
Sangdon Park
Edgar Dobriban
O. Sokolsky
Insup Lee
OODD
12
45
0
07 Jan 2022
DICE: Leveraging Sparsification for Out-of-Distribution Detection
Yiyou Sun
Yixuan Li
OODD
30
151
0
18 Nov 2021
SmoothMix: Training Confidence-calibrated Smoothed Classifiers for Certified Robustness
Jongheon Jeong
Sejun Park
Minkyu Kim
Heung-Chang Lee
Do-Guk Kim
Jinwoo Shin
AAML
15
55
0
17 Nov 2021
Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classification
Maximilian Stadler
Bertrand Charpentier
Simon Geisler
Daniel Zügner
Stephan Günnemann
UQCV
BDL
28
80
0
26 Oct 2021
Generalized Out-of-Distribution Detection: A Survey
Jingkang Yang
Kaiyang Zhou
Yixuan Li
Ziwei Liu
173
875
0
21 Oct 2021
DOODLER: Determining Out-Of-Distribution Likelihood from Encoder Reconstructions
Jonathan S. Kent
Bo-wen Li
OODD
13
0
0
27 Sep 2021
SoK: Machine Learning Governance
Varun Chandrasekaran
Hengrui Jia
Anvith Thudi
Adelin Travers
Mohammad Yaghini
Nicolas Papernot
30
16
0
20 Sep 2021
CODEs: Chamfer Out-of-Distribution Examples against Overconfidence Issue
Keke Tang
Dingruibo Miao
Weilong Peng
Jianpeng Wu
Yawen Shi
Zhaoquan Gu
Zhihong Tian
Wenping Wang
OODD
135
30
0
13 Aug 2021
How to Certify Machine Learning Based Safety-critical Systems? A Systematic Literature Review
Florian Tambon
Gabriel Laberge
Le An
Amin Nikanjam
Paulina Stevia Nouwou Mindom
Y. Pequignot
Foutse Khomh
G. Antoniol
E. Merlo
François Laviolette
17
65
0
26 Jul 2021
Responsible and Regulatory Conform Machine Learning for Medicine: A Survey of Challenges and Solutions
Eike Petersen
Yannik Potdevin
Esfandiar Mohammadi
Stephan Zidowitz
Sabrina Breyer
...
Sandra Henn
Ludwig Pechmann
M. Leucker
P. Rostalski
Christian Herzog
FaML
AILaw
OOD
27
21
0
20 Jul 2021
1
2
Next