ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.06043
  4. Cited By
Estimating Gradients for Discrete Random Variables by Sampling without
  Replacement

Estimating Gradients for Discrete Random Variables by Sampling without Replacement

14 February 2020
W. Kool
H. V. Hoof
Max Welling
    BDL
ArXivPDFHTML

Papers citing "Estimating Gradients for Discrete Random Variables by Sampling without Replacement"

35 / 35 papers shown
Title
Self-Improvement for Neural Combinatorial Optimization: Sample without
  Replacement, but Improvement
Self-Improvement for Neural Combinatorial Optimization: Sample without Replacement, but Improvement
Jonathan Pirnay
D. G. Grimm
42
10
0
22 Mar 2024
Differentiable Sampling of Categorical Distributions Using the
  CatLog-Derivative Trick
Differentiable Sampling of Categorical Distributions Using the CatLog-Derivative Trick
Lennert De Smet
Emanuele Sansone
Pedro Zuidberg Dos Martires
22
11
0
21 Nov 2023
DBsurf: A Discrepancy Based Method for Discrete Stochastic Gradient
  Estimation
DBsurf: A Discrepancy Based Method for Discrete Stochastic Gradient Estimation
Pau Mulet Arabí
Alec Flowers
Lukas Mauch
Fabien Cardinaux
BDL
19
0
0
07 Sep 2023
On Many-Actions Policy Gradient
On Many-Actions Policy Gradient
Michal Nauman
Marek Cygan
9
0
0
24 Oct 2022
Adaptive Perturbation-Based Gradient Estimation for Discrete Latent
  Variable Models
Adaptive Perturbation-Based Gradient Estimation for Discrete Latent Variable Models
Pasquale Minervini
Luca Franceschi
Mathias Niepert
38
11
0
11 Sep 2022
Calibrate and Debias Layer-wise Sampling for Graph Convolutional
  Networks
Calibrate and Debias Layer-wise Sampling for Graph Convolutional Networks
Yifan Chen
Tianning Xu
Dilek Z. Hakkani-Tür
Di Jin
Yun Yang
Ruoqing Zhu
13
4
0
01 Jun 2022
Sparse Graph Learning from Spatiotemporal Time Series
Sparse Graph Learning from Spatiotemporal Time Series
Andrea Cini
Daniele Zambon
C. Alippi
CML
AI4TS
35
18
0
26 May 2022
Unbiased and Efficient Sampling of Dependency Trees
Unbiased and Efficient Sampling of Dependency Trees
Milovs Stanojević
18
3
0
25 May 2022
Learning Discrete Structured Variational Auto-Encoder using Natural
  Evolution Strategies
Learning Discrete Structured Variational Auto-Encoder using Natural Evolution Strategies
Alon Berliner
Guy Rotman
Yossi Adi
Roi Reichart
Tamir Hazan
BDL
DRL
24
4
0
03 May 2022
Learning Group Importance using the Differentiable Hypergeometric
  Distribution
Learning Group Importance using the Differentiable Hypergeometric Distribution
Thomas M. Sutter
Laura Manduchi
Alain Ryser
Julia E. Vogt
36
7
0
03 Mar 2022
Gradient Estimation with Discrete Stein Operators
Gradient Estimation with Discrete Stein Operators
Jiaxin Shi
Yuhao Zhou
Jessica Hwang
Michalis K. Titsias
Lester W. Mackey
17
22
0
19 Feb 2022
Bayesian Nonparametrics for Offline Skill Discovery
Bayesian Nonparametrics for Offline Skill Discovery
Valentin Villecroze
H. Braviner
Panteha Naderian
Chris J. Maddison
G. Loaiza-Ganem
BDL
OffRL
14
8
0
09 Feb 2022
An Efficient Combinatorial Optimization Model Using Learning-to-Rank
  Distillation
An Efficient Combinatorial Optimization Model Using Learning-to-Rank Distillation
Honguk Woo
Hyunsung Lee
Sangwook Cho
11
5
0
24 Dec 2021
Scaling Structured Inference with Randomization
Scaling Structured Inference with Randomization
Yao Fu
John P. Cunningham
Mirella Lapata
BDL
27
2
0
07 Dec 2021
CARMS: Categorical-Antithetic-REINFORCE Multi-Sample Gradient Estimator
CARMS: Categorical-Antithetic-REINFORCE Multi-Sample Gradient Estimator
Alek Dimitriev
Mingyuan Zhou
6
7
0
26 Oct 2021
A Review of the Gumbel-max Trick and its Extensions for Discrete
  Stochasticity in Machine Learning
A Review of the Gumbel-max Trick and its Extensions for Discrete Stochasticity in Machine Learning
Iris A. M. Huijben
W. Kool
Max B. Paulus
Ruud J. G. van Sloun
24
92
0
04 Oct 2021
Conditional Poisson Stochastic Beam Search
Conditional Poisson Stochastic Beam Search
Clara Meister
Afra Amini
Tim Vieira
Ryan Cotterell
24
10
0
22 Sep 2021
Coupled Gradient Estimators for Discrete Latent Variables
Coupled Gradient Estimators for Discrete Latent Variables
Zhe Dong
A. Mnih
George Tucker
BDL
22
13
0
15 Jun 2021
Implicit MLE: Backpropagating Through Discrete Exponential Family
  Distributions
Implicit MLE: Backpropagating Through Discrete Exponential Family Distributions
Mathias Niepert
Pasquale Minervini
Luca Franceschi
24
81
0
03 Jun 2021
Storchastic: A Framework for General Stochastic Automatic
  Differentiation
Storchastic: A Framework for General Stochastic Automatic Differentiation
Emile van Krieken
Jakub M. Tomczak
A. T. Teije
ODL
OffRL
21
15
0
01 Apr 2021
Direct Evolutionary Optimization of Variational Autoencoders With Binary
  Latents
Direct Evolutionary Optimization of Variational Autoencoders With Binary Latents
E. Guiraud
Jakob Drefs
Jörg Lücke
DRL
25
3
0
27 Nov 2020
Experimental design for MRI by greedy policy search
Experimental design for MRI by greedy policy search
Tim Bakker
H. V. Hoof
Max Welling
20
55
0
30 Oct 2020
Sample Efficient Reinforcement Learning with REINFORCE
Sample Efficient Reinforcement Learning with REINFORCE
Junzi Zhang
Jongho Kim
Brendan O'Donoghue
Stephen P. Boyd
35
98
0
22 Oct 2020
VarGrad: A Low-Variance Gradient Estimator for Variational Inference
VarGrad: A Low-Variance Gradient Estimator for Variational Inference
Lorenz Richter
Ayman Boustati
Nikolas Nusken
Francisco J. R. Ruiz
Ömer Deniz Akyildiz
DRL
127
48
0
20 Oct 2020
Rao-Blackwellizing the Straight-Through Gumbel-Softmax Gradient
  Estimator
Rao-Blackwellizing the Straight-Through Gumbel-Softmax Gradient Estimator
Max B. Paulus
Chris J. Maddison
Andreas Krause
BDL
34
38
0
09 Oct 2020
Learning from eXtreme Bandit Feedback
Learning from eXtreme Bandit Feedback
Romain Lopez
Inderjit S. Dhillon
Michael I. Jordan
OffRL
20
25
0
27 Sep 2020
Natural Reweighted Wake-Sleep
Natural Reweighted Wake-Sleep
Csongor-Huba Várady
Riccardo Volpi
Luigi Malagò
Nihat Ay
BDL
11
0
0
15 Aug 2020
Controlling Privacy Loss in Sampling Schemes: an Analysis of Stratified
  and Cluster Sampling
Controlling Privacy Loss in Sampling Schemes: an Analysis of Stratified and Cluster Sampling
Mark Bun
Jörg Drechsler
Marco Gaboardi
Audra McMillan
Jayshree Sarathy
29
7
0
24 Jul 2020
Efficient Marginalization of Discrete and Structured Latent Variables
  via Sparsity
Efficient Marginalization of Discrete and Structured Latent Variables via Sparsity
Gonçalo M. Correia
Vlad Niculae
Wilker Aziz
André F. T. Martins
BDL
14
22
0
03 Jul 2020
Gradient Estimation with Stochastic Softmax Tricks
Gradient Estimation with Stochastic Softmax Tricks
Max B. Paulus
Dami Choi
Daniel Tarlow
Andreas Krause
Chris J. Maddison
BDL
34
85
0
15 Jun 2020
Learning-to-Rank with Partitioned Preference: Fast Estimation for the
  Plackett-Luce Model
Learning-to-Rank with Partitioned Preference: Fast Estimation for the Plackett-Luce Model
Jiaqi Ma
Xinyang Yi
Weijing Tang
Zhe Zhao
Lichan Hong
Ed H. Chi
Qiaozhu Mei
14
12
0
09 Jun 2020
Joint Stochastic Approximation and Its Application to Learning Discrete
  Latent Variable Models
Joint Stochastic Approximation and Its Application to Learning Discrete Latent Variable Models
Zhijian Ou
Yunfu Song
BDL
13
8
0
28 May 2020
Generalized Gumbel-Softmax Gradient Estimator for Generic Discrete
  Random Variables
Generalized Gumbel-Softmax Gradient Estimator for Generic Discrete Random Variables
Weonyoung Joo
Dongjun Kim
Seung-Jae Shin
Il-Chul Moon
21
1
0
04 Mar 2020
Invertible Gaussian Reparameterization: Revisiting the Gumbel-Softmax
Invertible Gaussian Reparameterization: Revisiting the Gumbel-Softmax
Andres Potapczynski
G. Loaiza-Ganem
John P. Cunningham
16
29
0
19 Dec 2019
Classical Structured Prediction Losses for Sequence to Sequence Learning
Classical Structured Prediction Losses for Sequence to Sequence Learning
Sergey Edunov
Myle Ott
Michael Auli
David Grangier
MarcÁurelio Ranzato
AIMat
48
185
0
14 Nov 2017
1