Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2002.06707
Cited By
Stochastic Normalizing Flows
16 February 2020
Hao Wu
Jonas Köhler
Frank Noé
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Stochastic Normalizing Flows"
50 / 122 papers shown
Title
Ergodic Generative Flows
Leo Maxime Brunswic
Mateo Clemente
Rui Heng Yang
Adam Sigal
Amir Rasouli
Yinchuan Li
37
0
0
06 May 2025
Diffusion-based supervised learning of generative models for efficient sampling of multimodal distributions
Hoang Tran
Zezhong Zhang
F. Bao
Dan Lu
Guannan Zhang
DiffM
42
0
0
20 Apr 2025
Adjoint Sampling: Highly Scalable Diffusion Samplers via Adjoint Matching
Aaron J. Havens
Benjamin Kurt Miller
Bing Yan
Carles Domingo-Enrich
Anuroop Sriram
...
Brandon Amos
Brian Karrer
Xiang Fu
Guan-Horng Liu
Ricky T. Q. Chen
DiffM
43
0
0
16 Apr 2025
Underdamped Diffusion Bridges with Applications to Sampling
Denis Blessing
Julius Berner
Lorenz Richter
Gerhard Neumann
DiffM
34
1
0
02 Mar 2025
End-To-End Learning of Gaussian Mixture Priors for Diffusion Sampler
Denis Blessing
Xiaogang Jia
Gerhard Neumann
DiffM
43
0
0
01 Mar 2025
Single-Step Consistent Diffusion Samplers
Pascal Jutras-Dubé
Patrick Pynadath
Ruqi Zhang
DiffM
73
0
0
17 Feb 2025
Neural Flow Samplers with Shortcut Models
Wuhao Chen
Zijing Ou
Yingzhen Li
77
0
0
11 Feb 2025
Physics-Conditioned Diffusion Models for Lattice Gauge Theory
Qianteng Zhu
Gert Aarts
Wei Wang
K. Zhou
L. Wang
53
1
0
08 Feb 2025
Empirical evaluation of normalizing flows in Markov Chain Monte Carlo
David Nabergoj
Erik Štrumbelj
BDL
TPM
36
0
0
22 Dec 2024
Diffusion Model from Scratch
Wang Zhen
Dong Yunyun
DiffM
59
0
0
14 Dec 2024
Sampling from Boltzmann densities with physics informed low-rank formats
Paul Hagemann
Janina Enrica Schutte
David Sommer
Martin Eigel
Gabriele Steidl
71
0
0
10 Dec 2024
Denoising Fisher Training For Neural Implicit Samplers
Weijian Luo
Wei Deng
23
0
0
03 Nov 2024
On learning higher-order cumulants in diffusion models
Gert Aarts
Diaa E. Habibi
L. Wang
K. Zhou
26
4
0
28 Oct 2024
Learned Reference-based Diffusion Sampling for multi-modal distributions
Maxence Noble
Louis Grenioux
Marylou Gabrié
Alain Durmus
DiffM
29
2
0
25 Oct 2024
Training Neural Samplers with Reverse Diffusive KL Divergence
Jiajun He
Wenlin Chen
Mingtian Zhang
David Barber
José Miguel Hernández-Lobato
DiffM
26
4
0
16 Oct 2024
Provable Convergence and Limitations of Geometric Tempering for Langevin Dynamics
Omar Chehab
Anna Korba
Austin Stromme
Adrien Vacher
33
2
0
13 Oct 2024
Numerical determination of the width and shape of the effective string using Stochastic Normalizing Flows
M. Caselle
E. Cellini
A. Nada
23
4
0
24 Sep 2024
Variational Learning of Gaussian Process Latent Variable Models through Stochastic Gradient Annealed Importance Sampling
Jian Xu
Shian Du
Junmei Yang
Qianli Ma
Delu Zeng
BDL
19
0
0
13 Aug 2024
Importance Corrected Neural JKO Sampling
Johannes Hertrich
Robert Gruhlke
26
1
0
29 Jul 2024
Combining Wasserstein-1 and Wasserstein-2 proximals: robust manifold learning via well-posed generative flows
Hyemin Gu
M. Katsoulakis
Luc Rey-Bellet
Benjamin J. Zhang
32
2
0
16 Jul 2024
Dynamical Measure Transport and Neural PDE Solvers for Sampling
Jingtong Sun
Julius Berner
Lorenz Richter
Marius Zeinhofer
Johannes Müller
Kamyar Azizzadenesheli
Anima Anandkumar
OT
DiffM
34
8
0
10 Jul 2024
Transferable Boltzmann Generators
Leon Klein
Frank Noé
35
12
0
20 Jun 2024
Beyond ELBOs: A Large-Scale Evaluation of Variational Methods for Sampling
Denis Blessing
Xiaogang Jia
Johannes Esslinger
Francisco Vargas
Gerhard Neumann
50
16
0
11 Jun 2024
RecMoDiffuse: Recurrent Flow Diffusion for Human Motion Generation
Mirgahney Mohamed
Harry Jake Cunningham
M. Deisenroth
Lourdes Agapito
DiffM
33
0
0
11 Jun 2024
A Diffusion Model Framework for Unsupervised Neural Combinatorial Optimization
Sebastian Sanokowski
Sepp Hochreiter
Sebastian Lehner
27
17
0
03 Jun 2024
Markovian Flow Matching: Accelerating MCMC with Continuous Normalizing Flows
A. Cabezas
Louis Sharrock
Christopher Nemeth
34
1
0
23 May 2024
Expensive Multi-Objective Bayesian Optimization Based on Diffusion Models
Bingdong Li
Zixiang Di
Yongfan Lu
Hong Qian
Feng Wang
Peng Yang
Ke Tang
Aimin Zhou
DiffM
22
1
0
14 May 2024
Liouville Flow Importance Sampler
Yifeng Tian
Nishant Panda
Yen Ting Lin
28
8
0
03 May 2024
Practical applications of machine-learned flows on gauge fields
Ryan Abbott
M. S. Albergo
D. Boyda
D. Hackett
G. Kanwar
Fernando Romero-López
P. Shanahan
Julian M. Urban
AI4CE
22
11
0
17 Apr 2024
Nonparametric Automatic Differentiation Variational Inference with Spline Approximation
Yuda Shao
Shan Yu
Tianshu Feng
16
1
0
10 Mar 2024
Iterated Denoising Energy Matching for Sampling from Boltzmann Densities
Tara Akhound-Sadegh
Jarrid Rector-Brooks
A. Bose
Sarthak Mittal
Pablo Lemos
...
Siamak Ravanbakhsh
Gauthier Gidel
Yoshua Bengio
Nikolay Malkin
Alexander Tong
DiffM
32
41
0
09 Feb 2024
Improved off-policy training of diffusion samplers
Marcin Sendera
Minsu Kim
Sarthak Mittal
Pablo Lemos
Luca Scimeca
Jarrid Rector-Brooks
Alexandre Adam
Yoshua Bengio
Nikolay Malkin
OffRL
64
17
0
07 Feb 2024
Diffusive Gibbs Sampling
Wenlin Chen
Mingtian Zhang
Brooks Paige
José Miguel Hernández-Lobato
David Barber
12
7
0
05 Feb 2024
Mixed Noise and Posterior Estimation with Conditional DeepGEM
Paul Hagemann
J. Hertrich
Maren Casfor
Sebastian Heidenreich
Gabriele Steidl
14
0
0
05 Feb 2024
AdvNF: Reducing Mode Collapse in Conditional Normalising Flows using Adversarial Learning
V. Kanaujia
Mathias S. Scheurer
Vipul Arora
GAN
DRL
12
2
0
29 Jan 2024
Scalable Normalizing Flows Enable Boltzmann Generators for Macromolecules
Joseph C. Kim
David Bloore
Karan Kapoor
Jun Feng
Ming-Hong Hao
Mengdi Wang
37
7
0
08 Jan 2024
Energy based diffusion generator for efficient sampling of Boltzmann distributions
Yan Wang
Ling Guo
Hao Wu
Tao Zhou
DiffM
31
3
0
04 Jan 2024
Learning from small data sets: Patch-based regularizers in inverse problems for image reconstruction
Moritz Piening
Fabian Altekrüger
J. Hertrich
Paul Hagemann
Andrea Walther
Gabriele Steidl
24
6
0
27 Dec 2023
On the Quantification of Image Reconstruction Uncertainty without Training Data
Sirui Bi
Victor Fung
Jiaxin Zhang
8
1
0
16 Nov 2023
Topology-Matching Normalizing Flows for Out-of-Distribution Detection in Robot Learning
Jianxiang Feng
Jongseok Lee
Simon Geisler
Stephan Gunnemann
Rudolph Triebel
OODD
19
4
0
11 Nov 2023
Diffusion Generative Flow Samplers: Improving learning signals through partial trajectory optimization
Dinghuai Zhang
Ricky Tian Qi Chen
Cheng-Hao Liu
Aaron C. Courville
Yoshua Bengio
24
40
0
04 Oct 2023
Neural Stochastic Differential Equations for Robust and Explainable Analysis of Electromagnetic Unintended Radiated Emissions
Sumit Kumar Jha
Susmit Jha
Rickard Ewetz
Alvaro Velasquez
10
2
0
27 Sep 2023
Variations and Relaxations of Normalizing Flows
Keegan Kelly
Lorena Piedras
Sukrit Rao
David Samuel Roth
BDL
25
0
0
08 Sep 2023
Advances in machine-learning-based sampling motivated by lattice quantum chromodynamics
Kyle Cranmer
G. Kanwar
S. Racanière
Danilo Jimenez Rezende
P. Shanahan
AI4CE
18
27
0
03 Sep 2023
Learning variational autoencoders via MCMC speed measures
Marcel Hirt
Vasileios Kreouzis
P. Dellaportas
BDL
DRL
13
2
0
26 Aug 2023
SE(3) Equivariant Augmented Coupling Flows
Laurence I. Midgley
Vincent Stimper
Javier Antorán
Emile Mathieu
Bernhard Schölkopf
José Miguel Hernández-Lobato
30
22
0
20 Aug 2023
Fast Inference and Update of Probabilistic Density Estimation on Trajectory Prediction
Takahiro Maeda
Norimichi Ukita
21
27
0
17 Aug 2023
A Review of Change of Variable Formulas for Generative Modeling
Ullrich Kothe
19
6
0
04 Aug 2023
Improved sampling via learned diffusions
Lorenz Richter
Julius Berner
DiffM
24
52
0
03 Jul 2023
Transport meets Variational Inference: Controlled Monte Carlo Diffusions
Francisco Vargas
Shreyas Padhy
Denis Blessing
Nikolas Nusken
DiffM
OT
40
3
0
03 Jul 2023
1
2
3
Next