ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.06707
  4. Cited By
Stochastic Normalizing Flows

Stochastic Normalizing Flows

16 February 2020
Hao Wu
Jonas Köhler
Frank Noé
ArXivPDFHTML

Papers citing "Stochastic Normalizing Flows"

22 / 122 papers shown
Title
Stochastic Normalizing Flows for Inverse Problems: a Markov Chains
  Viewpoint
Stochastic Normalizing Flows for Inverse Problems: a Markov Chains Viewpoint
Paul Hagemann
J. Hertrich
Gabriele Steidl
BDL
18
36
0
23 Sep 2021
Learning the temporal evolution of multivariate densities via
  normalizing flows
Learning the temporal evolution of multivariate densities via normalizing flows
Yubin Lu
R. Maulik
Ting Gao
Felix Dietrich
Ioannis G. Kevrekidis
Jinqiao Duan
11
22
0
29 Jul 2021
Monte Carlo Variational Auto-Encoders
Monte Carlo Variational Auto-Encoders
Achille Thin
Nikita Kotelevskii
Arnaud Doucet
Alain Durmus
Eric Moulines
Maxim Panov
BDL
DRL
11
44
0
30 Jun 2021
Closed-form Continuous-time Neural Models
Closed-form Continuous-time Neural Models
Ramin Hasani
Mathias Lechner
Alexander Amini
Lucas Liebenwein
Aaron Ray
Max Tschaikowski
G. Teschl
Daniela Rus
PINN
AI4TS
18
82
0
25 Jun 2021
CAFLOW: Conditional Autoregressive Flows
CAFLOW: Conditional Autoregressive Flows
Georgios Batzolis
M. Carioni
Christian Etmann
S. Afyouni
Zoe Kourtzi
Carola Bibiane Schönlieb
6
2
0
04 Jun 2021
Multiresolution Equivariant Graph Variational Autoencoder
Multiresolution Equivariant Graph Variational Autoencoder
Truong Son-Hy
Risi Kondor
13
17
0
02 Jun 2021
DAAIN: Detection of Anomalous and Adversarial Input using Normalizing
  Flows
DAAIN: Detection of Anomalous and Adversarial Input using Normalizing Flows
Samuel von Baussnern
Johannes Otterbach
Adrian Loy
Mathieu Salzmann
Thomas Wollmann
8
1
0
30 May 2021
Efficient and Accurate Gradients for Neural SDEs
Efficient and Accurate Gradients for Neural SDEs
Patrick Kidger
James Foster
Xuechen Li
Terry Lyons
DiffM
14
60
0
27 May 2021
NEO: Non Equilibrium Sampling on the Orbit of a Deterministic Transform
NEO: Non Equilibrium Sampling on the Orbit of a Deterministic Transform
Achille Thin
Yazid Janati
Sylvain Le Corff
Charles Ollion
Arnaud Doucet
Alain Durmus
Eric Moulines
C. Robert
15
7
0
17 Mar 2021
Deep Generative Modelling: A Comparative Review of VAEs, GANs,
  Normalizing Flows, Energy-Based and Autoregressive Models
Deep Generative Modelling: A Comparative Review of VAEs, GANs, Normalizing Flows, Energy-Based and Autoregressive Models
Sam Bond-Taylor
Adam Leach
Yang Long
Chris G. Willcocks
VLM
TPM
36
477
0
08 Mar 2021
Annealed Flow Transport Monte Carlo
Annealed Flow Transport Monte Carlo
Michael Arbel
A. G. Matthews
Arnaud Doucet
20
69
0
15 Feb 2021
Neural SDEs as Infinite-Dimensional GANs
Neural SDEs as Infinite-Dimensional GANs
Patrick Kidger
James Foster
Xuechen Li
Harald Oberhauser
Terry Lyons
DiffM
6
141
0
06 Feb 2021
Exact Langevin Dynamics with Stochastic Gradients
Exact Langevin Dynamics with Stochastic Gradients
Adrià Garriga-Alonso
Vincent Fortuin
BDL
13
31
0
02 Feb 2021
Introduction to Normalizing Flows for Lattice Field Theory
Introduction to Normalizing Flows for Lattice Field Theory
M. S. Albergo
D. Boyda
D. Hackett
G. Kanwar
Kyle Cranmer
S. Racanière
Danilo Jimenez Rezende
P. Shanahan
AI4CE
19
58
0
20 Jan 2021
Training Invertible Linear Layers through Rank-One Perturbations
Training Invertible Linear Layers through Rank-One Perturbations
Andreas Krämer
Jonas Köhler
Frank Noé
8
0
0
14 Oct 2020
SurVAE Flows: Surjections to Bridge the Gap between VAEs and Flows
SurVAE Flows: Surjections to Bridge the Gap between VAEs and Flows
Didrik Nielsen
P. Jaini
Emiel Hoogeboom
Ole Winther
Max Welling
TPM
BDL
DRL
23
88
0
06 Jul 2020
Denoising Diffusion Probabilistic Models
Denoising Diffusion Probabilistic Models
Jonathan Ho
Ajay Jain
Pieter Abbeel
DiffM
116
16,850
0
19 Jun 2020
STEER: Simple Temporal Regularization For Neural ODEs
STEER: Simple Temporal Regularization For Neural ODEs
Arna Ghosh
Harkirat Singh Behl
Emilien Dupont
Philip H. S. Torr
Vinay P. Namboodiri
BDL
AI4TS
14
73
0
18 Jun 2020
Latent Transformations for Discrete-Data Normalising Flows
Latent Transformations for Discrete-Data Normalising Flows
Rob D. Hesselink
Wilker Aziz
DRL
11
1
0
11 Jun 2020
The Power Spherical distribution
The Power Spherical distribution
Nicola De Cao
Wilker Aziz
14
28
0
08 Jun 2020
Neural Controlled Differential Equations for Irregular Time Series
Neural Controlled Differential Equations for Irregular Time Series
Patrick Kidger
James Morrill
James Foster
Terry Lyons
AI4TS
25
444
0
18 May 2020
Signatory: differentiable computations of the signature and logsignature
  transforms, on both CPU and GPU
Signatory: differentiable computations of the signature and logsignature transforms, on both CPU and GPU
Patrick Kidger
Terry Lyons
10
83
0
03 Jan 2020
Previous
123