ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.06707
  4. Cited By
Stochastic Normalizing Flows

Stochastic Normalizing Flows

16 February 2020
Hao Wu
Jonas Köhler
Frank Noé
ArXivPDFHTML

Papers citing "Stochastic Normalizing Flows"

50 / 122 papers shown
Title
Adaptive Annealed Importance Sampling with Constant Rate Progress
Adaptive Annealed Importance Sampling with Constant Rate Progress
Shirin Goshtasbpour
Victor Cohen
F. Pérez-Cruz
13
7
0
27 Jun 2023
Equivariant flow matching
Equivariant flow matching
Leon Klein
Andreas Krämer
Frank Noé
16
59
0
26 Jun 2023
Enhanced Sampling with Machine Learning: A Review
Enhanced Sampling with Machine Learning: A Review
S. Mehdi
Zachary Smith
Lukas Herron
Ziyue Zou
P. Tiwary
AI4CE
11
8
0
15 Jun 2023
Entropy-based Training Methods for Scalable Neural Implicit Sampler
Entropy-based Training Methods for Scalable Neural Implicit Sampler
Weijian Luo
Boya Zhang
Zhihua Zhang
21
10
0
08 Jun 2023
Non-adversarial training of Neural SDEs with signature kernel scores
Non-adversarial training of Neural SDEs with signature kernel scores
Zacharia Issa
Blanka Horvath
M. Lemercier
C. Salvi
AI4TS
27
24
0
25 May 2023
Normalizing flow sampling with Langevin dynamics in the latent space
Normalizing flow sampling with Langevin dynamics in the latent space
Florentin Coeurdoux
N. Dobigeon
P. Chainais
DRL
11
7
0
20 May 2023
Generative Sliced MMD Flows with Riesz Kernels
Generative Sliced MMD Flows with Riesz Kernels
J. Hertrich
Christian Wald
Fabian Altekrüger
Paul Hagemann
28
23
0
19 May 2023
Piecewise Normalizing Flows
Piecewise Normalizing Flows
H. Bevins
Will Handley
Thomas Gessey-Jones
20
0
0
04 May 2023
A mean-field games laboratory for generative modeling
A mean-field games laboratory for generative modeling
Benjamin J. Zhang
M. Katsoulakis
22
17
0
26 Apr 2023
NF-ULA: Langevin Monte Carlo with Normalizing Flow Prior for Imaging
  Inverse Problems
NF-ULA: Langevin Monte Carlo with Normalizing Flow Prior for Imaging Inverse Problems
Ziruo Cai
Junqi Tang
Subhadip Mukherjee
Jinglai Li
Carola Bibiane Schönlieb
Xiaoqun Zhang
AI4CE
28
3
0
17 Apr 2023
Neural Diffeomorphic Non-uniform B-spline Flows
Neural Diffeomorphic Non-uniform B-spline Flows
S. Hong
S. Chun
22
1
0
07 Apr 2023
Conditional Generative Models are Provably Robust: Pointwise Guarantees
  for Bayesian Inverse Problems
Conditional Generative Models are Provably Robust: Pointwise Guarantees for Bayesian Inverse Problems
Fabian Altekrüger
Paul Hagemann
Gabriele Steidl
TPM
21
9
0
28 Mar 2023
Eryn : A multi-purpose sampler for Bayesian inference
Eryn : A multi-purpose sampler for Bayesian inference
N. Karnesis
Michael L. Katz
N. Korsakova
J. Gair
N. Stergioulas
8
28
0
03 Mar 2023
Denoising Diffusion Samplers
Denoising Diffusion Samplers
Francisco Vargas
Will Grathwohl
Arnaud Doucet
DiffM
19
75
0
27 Feb 2023
Modeling Polypharmacy and Predicting Drug-Drug Interactions using Deep
  Generative Models on Multimodal Graphs
Modeling Polypharmacy and Predicting Drug-Drug Interactions using Deep Generative Models on Multimodal Graphs
Nhat-Khang Ngô
Truong Son-Hy
Risi Kondor
GNN
BDL
11
1
0
17 Feb 2023
A theory of continuous generative flow networks
A theory of continuous generative flow networks
Salem Lahlou
T. Deleu
Pablo Lemos
Dinghuai Zhang
Alexandra Volokhova
Alex Hernández-García
Léna Néhale Ezzine
Yoshua Bengio
Nikolay Malkin
AI4CE
24
79
0
30 Jan 2023
Neural Wasserstein Gradient Flows for Maximum Mean Discrepancies with
  Riesz Kernels
Neural Wasserstein Gradient Flows for Maximum Mean Discrepancies with Riesz Kernels
Fabian Altekrüger
J. Hertrich
Gabriele Steidl
27
13
0
27 Jan 2023
Rigid Body Flows for Sampling Molecular Crystal Structures
Rigid Body Flows for Sampling Molecular Crystal Structures
Jonas Köhler
Michele Invernizzi
P. D. Haan
Frank Noé
AI4CE
25
27
0
26 Jan 2023
normflows: A PyTorch Package for Normalizing Flows
normflows: A PyTorch Package for Normalizing Flows
Vincent Stimper
David Liu
Andrew Campbell
V. Berenz
Lukas Ryll
Bernhard Schölkopf
José Miguel Hernández-Lobato
AI4CE
14
55
0
26 Jan 2023
Learning Interpolations between Boltzmann Densities
Learning Interpolations between Boltzmann Densities
Bálint Máté
Franccois Fleuret
14
23
0
18 Jan 2023
Designing losses for data-free training of normalizing flows on
  Boltzmann distributions
Designing losses for data-free training of normalizing flows on Boltzmann distributions
Loris Felardos
Jérôme Hénin
Guillaume Charpiat
AI4CE
16
8
0
13 Jan 2023
On the Robustness of Normalizing Flows for Inverse Problems in Imaging
On the Robustness of Normalizing Flows for Inverse Problems in Imaging
Seongmin Hong
I. Park
S. Chun
23
7
0
08 Dec 2022
Accelerating Inverse Learning via Intelligent Localization with
  Exploratory Sampling
Accelerating Inverse Learning via Intelligent Localization with Exploratory Sampling
Jiaxin Zhang
Sirui Bi
Victor Fung
17
3
0
02 Dec 2022
Proximal Residual Flows for Bayesian Inverse Problems
Proximal Residual Flows for Bayesian Inverse Problems
J. Hertrich
BDL
TPM
23
4
0
30 Nov 2022
Aspects of scaling and scalability for flow-based sampling of lattice
  QCD
Aspects of scaling and scalability for flow-based sampling of lattice QCD
Ryan Abbott
M. S. Albergo
Aleksandar Botev
D. Boyda
Kyle Cranmer
...
Ali Razavi
Danilo Jimenez Rezende
F. Romero-López
P. Shanahan
Julian M. Urban
22
33
0
14 Nov 2022
An optimal control perspective on diffusion-based generative modeling
An optimal control perspective on diffusion-based generative modeling
Julius Berner
Lorenz Richter
Karen Ullrich
DiffM
23
80
0
02 Nov 2022
Blind Super-Resolution for Remote Sensing Images via Conditional
  Stochastic Normalizing Flows
Blind Super-Resolution for Remote Sensing Images via Conditional Stochastic Normalizing Flows
Hanlin Wu
Ning Ni
Shan Wang
Li-bao Zhang
30
8
0
14 Oct 2022
Optimization of Annealed Importance Sampling Hyperparameters
Optimization of Annealed Importance Sampling Hyperparameters
Shirin Goshtasbpour
F. Pérez-Cruz
13
1
0
27 Sep 2022
Local_INN: Implicit Map Representation and Localization with Invertible
  Neural Networks
Local_INN: Implicit Map Representation and Localization with Invertible Neural Networks
Zirui Zang
Hongrui Zheng
Johannes Betz
Rahul Mangharam
21
6
0
24 Sep 2022
Predicting Drug-Drug Interactions using Deep Generative Models on Graphs
Predicting Drug-Drug Interactions using Deep Generative Models on Graphs
Nhat-Khang Ngô
Truong Son-Hy
Risi Kondor
BDL
GNN
20
3
0
14 Sep 2022
Diffusion Models: A Comprehensive Survey of Methods and Applications
Diffusion Models: A Comprehensive Survey of Methods and Applications
Ling Yang
Zhilong Zhang
Yingxia Shao
Shenda Hong
Runsheng Xu
Yue Zhao
Wentao Zhang
Bin Cui
Ming-Hsuan Yang
DiffM
MedIm
224
1,296
0
02 Sep 2022
Langevin Diffusion Variational Inference
Langevin Diffusion Variational Inference
Tomas Geffner
Justin Domke
DiffM
9
19
0
16 Aug 2022
Score-Based Diffusion meets Annealed Importance Sampling
Score-Based Diffusion meets Annealed Importance Sampling
Arnaud Doucet
Will Grathwohl
A. G. Matthews
Heiko Strathmann
DiffM
28
43
0
16 Aug 2022
Flow Annealed Importance Sampling Bootstrap
Flow Annealed Importance Sampling Bootstrap
Laurence Illing Midgley
Vincent Stimper
G. Simm
Bernhard Schölkopf
José Miguel Hernández-Lobato
16
77
0
03 Aug 2022
Conditioning Normalizing Flows for Rare Event Sampling
Conditioning Normalizing Flows for Rare Event Sampling
S. Falkner
A. Coretti
Salvatore Romano
P. Geissler
C. Dellago
14
12
0
29 Jul 2022
Gradients should stay on Path: Better Estimators of the Reverse- and
  Forward KL Divergence for Normalizing Flows
Gradients should stay on Path: Better Estimators of the Reverse- and Forward KL Divergence for Normalizing Flows
Lorenz Vaitl
K. Nicoli
Shinichi Nakajima
Pan Kessel
42
24
0
17 Jul 2022
Text to Image Synthesis using Stacked Conditional Variational
  Autoencoders and Conditional Generative Adversarial Networks
Text to Image Synthesis using Stacked Conditional Variational Autoencoders and Conditional Generative Adversarial Networks
Haileleol Tibebu
Aadin Malik
V. D. Silva
GAN
18
7
0
06 Jul 2022
Can Push-forward Generative Models Fit Multimodal Distributions?
Can Push-forward Generative Models Fit Multimodal Distributions?
Antoine Salmona
Valentin De Bortoli
J. Delon
A. Desolneux
DiffM
21
36
0
29 Jun 2022
Learning Optimal Flows for Non-Equilibrium Importance Sampling
Learning Optimal Flows for Non-Equilibrium Importance Sampling
Yu Cao
Eric Vanden-Eijnden
8
3
0
20 Jun 2022
E2V-SDE: From Asynchronous Events to Fast and Continuous Video Reconstruction via Neural Stochastic Differential Equations
Jongwan Kim
Dongjin Lee
Byunggook Na
Seongsik Park
Jeonghee Jo
Sung-Hoon Yoon
29
0
0
15 Jun 2022
A Tale of Two Flows: Cooperative Learning of Langevin Flow and
  Normalizing Flow Toward Energy-Based Model
A Tale of Two Flows: Cooperative Learning of Langevin Flow and Normalizing Flow Toward Energy-Based Model
Jianwen Xie
Y. Zhu
J. Li
Ping Li
16
50
0
13 May 2022
Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
  Dynamics of Panel Data
Mixed Effects Neural ODE: A Variational Approximation for Analyzing the Dynamics of Panel Data
Jurijs Nazarovs
Rudrasis Chakraborty
Songwong Tasneeyapant
Sathya Ravi
Vikas Singh
12
4
0
18 Feb 2022
Continual Repeated Annealed Flow Transport Monte Carlo
Continual Repeated Annealed Flow Transport Monte Carlo
A. G. Matthews
Michael Arbel
Danilo Jimenez Rezende
Arnaud Doucet
OT
24
46
0
31 Jan 2022
Path Integral Sampler: a stochastic control approach for sampling
Path Integral Sampler: a stochastic control approach for sampling
Qinsheng Zhang
Yongxin Chen
DiffM
13
101
0
30 Nov 2021
Generalized Normalizing Flows via Markov Chains
Generalized Normalizing Flows via Markov Chains
Paul Hagemann
J. Hertrich
Gabriele Steidl
BDL
DiffM
AI4CE
22
22
0
24 Nov 2021
Bootstrap Your Flow
Bootstrap Your Flow
Laurence Illing Midgley
Vincent Stimper
G. Simm
José Miguel Hernández-Lobato
15
5
0
22 Nov 2021
Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling
Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling
Greg Ver Steeg
Aram Galstyan
20
13
0
03 Nov 2021
Resampling Base Distributions of Normalizing Flows
Resampling Base Distributions of Normalizing Flows
Vincent Stimper
Bernhard Schölkopf
José Miguel Hernández-Lobato
BDL
22
32
0
29 Oct 2021
Diffusion Normalizing Flow
Diffusion Normalizing Flow
Qinsheng Zhang
Yongxin Chen
DiffM
21
87
0
14 Oct 2021
Smooth Normalizing Flows
Smooth Normalizing Flows
Jonas Köhler
Andreas Krämer
Frank Noé
13
53
0
01 Oct 2021
Previous
123
Next