ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.06707
  4. Cited By
Stochastic Normalizing Flows

Stochastic Normalizing Flows

16 February 2020
Hao Wu
Jonas Köhler
Frank Noé
ArXivPDFHTML

Papers citing "Stochastic Normalizing Flows"

50 / 122 papers shown
Title
Ergodic Generative Flows
Ergodic Generative Flows
Leo Maxime Brunswic
Mateo Clemente
Rui Heng Yang
Adam Sigal
Amir Rasouli
Yinchuan Li
37
0
0
06 May 2025
Diffusion-based supervised learning of generative models for efficient sampling of multimodal distributions
Diffusion-based supervised learning of generative models for efficient sampling of multimodal distributions
Hoang Tran
Zezhong Zhang
F. Bao
Dan Lu
Guannan Zhang
DiffM
42
0
0
20 Apr 2025
Adjoint Sampling: Highly Scalable Diffusion Samplers via Adjoint Matching
Adjoint Sampling: Highly Scalable Diffusion Samplers via Adjoint Matching
Aaron J. Havens
Benjamin Kurt Miller
Bing Yan
Carles Domingo-Enrich
Anuroop Sriram
...
Brandon Amos
Brian Karrer
Xiang Fu
Guan-Horng Liu
Ricky T. Q. Chen
DiffM
43
0
0
16 Apr 2025
Underdamped Diffusion Bridges with Applications to Sampling
Denis Blessing
Julius Berner
Lorenz Richter
Gerhard Neumann
DiffM
34
1
0
02 Mar 2025
End-To-End Learning of Gaussian Mixture Priors for Diffusion Sampler
Denis Blessing
Xiaogang Jia
Gerhard Neumann
DiffM
43
0
0
01 Mar 2025
Single-Step Consistent Diffusion Samplers
Single-Step Consistent Diffusion Samplers
Pascal Jutras-Dubé
Patrick Pynadath
Ruqi Zhang
DiffM
73
0
0
17 Feb 2025
Neural Flow Samplers with Shortcut Models
Neural Flow Samplers with Shortcut Models
Wuhao Chen
Zijing Ou
Yingzhen Li
77
0
0
11 Feb 2025
Physics-Conditioned Diffusion Models for Lattice Gauge Theory
Qianteng Zhu
Gert Aarts
Wei Wang
K. Zhou
L. Wang
53
1
0
08 Feb 2025
Empirical evaluation of normalizing flows in Markov Chain Monte Carlo
Empirical evaluation of normalizing flows in Markov Chain Monte Carlo
David Nabergoj
Erik Štrumbelj
BDL
TPM
36
0
0
22 Dec 2024
Diffusion Model from Scratch
Diffusion Model from Scratch
Wang Zhen
Dong Yunyun
DiffM
59
0
0
14 Dec 2024
Sampling from Boltzmann densities with physics informed low-rank formats
Sampling from Boltzmann densities with physics informed low-rank formats
Paul Hagemann
Janina Enrica Schutte
David Sommer
Martin Eigel
Gabriele Steidl
71
0
0
10 Dec 2024
Denoising Fisher Training For Neural Implicit Samplers
Denoising Fisher Training For Neural Implicit Samplers
Weijian Luo
Wei Deng
23
0
0
03 Nov 2024
On learning higher-order cumulants in diffusion models
On learning higher-order cumulants in diffusion models
Gert Aarts
Diaa E. Habibi
L. Wang
K. Zhou
26
4
0
28 Oct 2024
Learned Reference-based Diffusion Sampling for multi-modal distributions
Learned Reference-based Diffusion Sampling for multi-modal distributions
Maxence Noble
Louis Grenioux
Marylou Gabrié
Alain Durmus
DiffM
29
2
0
25 Oct 2024
Training Neural Samplers with Reverse Diffusive KL Divergence
Training Neural Samplers with Reverse Diffusive KL Divergence
Jiajun He
Wenlin Chen
Mingtian Zhang
David Barber
José Miguel Hernández-Lobato
DiffM
26
4
0
16 Oct 2024
Provable Convergence and Limitations of Geometric Tempering for Langevin Dynamics
Provable Convergence and Limitations of Geometric Tempering for Langevin Dynamics
Omar Chehab
Anna Korba
Austin Stromme
Adrien Vacher
33
2
0
13 Oct 2024
Numerical determination of the width and shape of the effective string
  using Stochastic Normalizing Flows
Numerical determination of the width and shape of the effective string using Stochastic Normalizing Flows
M. Caselle
E. Cellini
A. Nada
23
4
0
24 Sep 2024
Variational Learning of Gaussian Process Latent Variable Models through
  Stochastic Gradient Annealed Importance Sampling
Variational Learning of Gaussian Process Latent Variable Models through Stochastic Gradient Annealed Importance Sampling
Jian Xu
Shian Du
Junmei Yang
Qianli Ma
Delu Zeng
BDL
19
0
0
13 Aug 2024
Importance Corrected Neural JKO Sampling
Importance Corrected Neural JKO Sampling
Johannes Hertrich
Robert Gruhlke
26
1
0
29 Jul 2024
Combining Wasserstein-1 and Wasserstein-2 proximals: robust manifold
  learning via well-posed generative flows
Combining Wasserstein-1 and Wasserstein-2 proximals: robust manifold learning via well-posed generative flows
Hyemin Gu
M. Katsoulakis
Luc Rey-Bellet
Benjamin J. Zhang
32
2
0
16 Jul 2024
Dynamical Measure Transport and Neural PDE Solvers for Sampling
Dynamical Measure Transport and Neural PDE Solvers for Sampling
Jingtong Sun
Julius Berner
Lorenz Richter
Marius Zeinhofer
Johannes Müller
Kamyar Azizzadenesheli
Anima Anandkumar
OT
DiffM
34
8
0
10 Jul 2024
Transferable Boltzmann Generators
Transferable Boltzmann Generators
Leon Klein
Frank Noé
35
12
0
20 Jun 2024
Beyond ELBOs: A Large-Scale Evaluation of Variational Methods for
  Sampling
Beyond ELBOs: A Large-Scale Evaluation of Variational Methods for Sampling
Denis Blessing
Xiaogang Jia
Johannes Esslinger
Francisco Vargas
Gerhard Neumann
50
16
0
11 Jun 2024
RecMoDiffuse: Recurrent Flow Diffusion for Human Motion Generation
RecMoDiffuse: Recurrent Flow Diffusion for Human Motion Generation
Mirgahney Mohamed
Harry Jake Cunningham
M. Deisenroth
Lourdes Agapito
DiffM
33
0
0
11 Jun 2024
A Diffusion Model Framework for Unsupervised Neural Combinatorial
  Optimization
A Diffusion Model Framework for Unsupervised Neural Combinatorial Optimization
Sebastian Sanokowski
Sepp Hochreiter
Sebastian Lehner
27
17
0
03 Jun 2024
Markovian Flow Matching: Accelerating MCMC with Continuous Normalizing
  Flows
Markovian Flow Matching: Accelerating MCMC with Continuous Normalizing Flows
A. Cabezas
Louis Sharrock
Christopher Nemeth
34
1
0
23 May 2024
Expensive Multi-Objective Bayesian Optimization Based on Diffusion
  Models
Expensive Multi-Objective Bayesian Optimization Based on Diffusion Models
Bingdong Li
Zixiang Di
Yongfan Lu
Hong Qian
Feng Wang
Peng Yang
Ke Tang
Aimin Zhou
DiffM
22
1
0
14 May 2024
Liouville Flow Importance Sampler
Liouville Flow Importance Sampler
Yifeng Tian
Nishant Panda
Yen Ting Lin
28
8
0
03 May 2024
Practical applications of machine-learned flows on gauge fields
Practical applications of machine-learned flows on gauge fields
Ryan Abbott
M. S. Albergo
D. Boyda
D. Hackett
G. Kanwar
Fernando Romero-López
P. Shanahan
Julian M. Urban
AI4CE
22
11
0
17 Apr 2024
Nonparametric Automatic Differentiation Variational Inference with
  Spline Approximation
Nonparametric Automatic Differentiation Variational Inference with Spline Approximation
Yuda Shao
Shan Yu
Tianshu Feng
16
1
0
10 Mar 2024
Iterated Denoising Energy Matching for Sampling from Boltzmann Densities
Iterated Denoising Energy Matching for Sampling from Boltzmann Densities
Tara Akhound-Sadegh
Jarrid Rector-Brooks
A. Bose
Sarthak Mittal
Pablo Lemos
...
Siamak Ravanbakhsh
Gauthier Gidel
Yoshua Bengio
Nikolay Malkin
Alexander Tong
DiffM
32
41
0
09 Feb 2024
Improved off-policy training of diffusion samplers
Improved off-policy training of diffusion samplers
Marcin Sendera
Minsu Kim
Sarthak Mittal
Pablo Lemos
Luca Scimeca
Jarrid Rector-Brooks
Alexandre Adam
Yoshua Bengio
Nikolay Malkin
OffRL
64
17
0
07 Feb 2024
Diffusive Gibbs Sampling
Diffusive Gibbs Sampling
Wenlin Chen
Mingtian Zhang
Brooks Paige
José Miguel Hernández-Lobato
David Barber
12
7
0
05 Feb 2024
Mixed Noise and Posterior Estimation with Conditional DeepGEM
Mixed Noise and Posterior Estimation with Conditional DeepGEM
Paul Hagemann
J. Hertrich
Maren Casfor
Sebastian Heidenreich
Gabriele Steidl
14
0
0
05 Feb 2024
AdvNF: Reducing Mode Collapse in Conditional Normalising Flows using
  Adversarial Learning
AdvNF: Reducing Mode Collapse in Conditional Normalising Flows using Adversarial Learning
V. Kanaujia
Mathias S. Scheurer
Vipul Arora
GAN
DRL
12
2
0
29 Jan 2024
Scalable Normalizing Flows Enable Boltzmann Generators for
  Macromolecules
Scalable Normalizing Flows Enable Boltzmann Generators for Macromolecules
Joseph C. Kim
David Bloore
Karan Kapoor
Jun Feng
Ming-Hong Hao
Mengdi Wang
37
7
0
08 Jan 2024
Energy based diffusion generator for efficient sampling of Boltzmann
  distributions
Energy based diffusion generator for efficient sampling of Boltzmann distributions
Yan Wang
Ling Guo
Hao Wu
Tao Zhou
DiffM
34
3
0
04 Jan 2024
Learning from small data sets: Patch-based regularizers in inverse
  problems for image reconstruction
Learning from small data sets: Patch-based regularizers in inverse problems for image reconstruction
Moritz Piening
Fabian Altekrüger
J. Hertrich
Paul Hagemann
Andrea Walther
Gabriele Steidl
24
6
0
27 Dec 2023
On the Quantification of Image Reconstruction Uncertainty without
  Training Data
On the Quantification of Image Reconstruction Uncertainty without Training Data
Sirui Bi
Victor Fung
Jiaxin Zhang
8
1
0
16 Nov 2023
Topology-Matching Normalizing Flows for Out-of-Distribution Detection in
  Robot Learning
Topology-Matching Normalizing Flows for Out-of-Distribution Detection in Robot Learning
Jianxiang Feng
Jongseok Lee
Simon Geisler
Stephan Gunnemann
Rudolph Triebel
OODD
19
4
0
11 Nov 2023
Diffusion Generative Flow Samplers: Improving learning signals through
  partial trajectory optimization
Diffusion Generative Flow Samplers: Improving learning signals through partial trajectory optimization
Dinghuai Zhang
Ricky Tian Qi Chen
Cheng-Hao Liu
Aaron C. Courville
Yoshua Bengio
24
40
0
04 Oct 2023
Neural Stochastic Differential Equations for Robust and Explainable
  Analysis of Electromagnetic Unintended Radiated Emissions
Neural Stochastic Differential Equations for Robust and Explainable Analysis of Electromagnetic Unintended Radiated Emissions
Sumit Kumar Jha
Susmit Jha
Rickard Ewetz
Alvaro Velasquez
10
2
0
27 Sep 2023
Variations and Relaxations of Normalizing Flows
Variations and Relaxations of Normalizing Flows
Keegan Kelly
Lorena Piedras
Sukrit Rao
David Samuel Roth
BDL
25
0
0
08 Sep 2023
Advances in machine-learning-based sampling motivated by lattice quantum
  chromodynamics
Advances in machine-learning-based sampling motivated by lattice quantum chromodynamics
Kyle Cranmer
G. Kanwar
S. Racanière
Danilo Jimenez Rezende
P. Shanahan
AI4CE
18
27
0
03 Sep 2023
Learning variational autoencoders via MCMC speed measures
Learning variational autoencoders via MCMC speed measures
Marcel Hirt
Vasileios Kreouzis
P. Dellaportas
BDL
DRL
13
2
0
26 Aug 2023
SE(3) Equivariant Augmented Coupling Flows
SE(3) Equivariant Augmented Coupling Flows
Laurence I. Midgley
Vincent Stimper
Javier Antorán
Emile Mathieu
Bernhard Schölkopf
José Miguel Hernández-Lobato
30
22
0
20 Aug 2023
Fast Inference and Update of Probabilistic Density Estimation on
  Trajectory Prediction
Fast Inference and Update of Probabilistic Density Estimation on Trajectory Prediction
Takahiro Maeda
Norimichi Ukita
21
27
0
17 Aug 2023
A Review of Change of Variable Formulas for Generative Modeling
A Review of Change of Variable Formulas for Generative Modeling
Ullrich Kothe
19
6
0
04 Aug 2023
Improved sampling via learned diffusions
Improved sampling via learned diffusions
Lorenz Richter
Julius Berner
DiffM
24
52
0
03 Jul 2023
Transport meets Variational Inference: Controlled Monte Carlo Diffusions
Transport meets Variational Inference: Controlled Monte Carlo Diffusions
Francisco Vargas
Shreyas Padhy
Denis Blessing
Nikolas Nusken
DiffM
OT
40
3
0
03 Jul 2023
123
Next