Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2004.14983
Cited By
Control, Generate, Augment: A Scalable Framework for Multi-Attribute Text Generation
30 April 2020
Giuseppe Russo
Nora Hollenstein
C. Musat
Ce Zhang
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Control, Generate, Augment: A Scalable Framework for Multi-Attribute Text Generation"
5 / 5 papers shown
Title
Boosting Reward Model with Preference-Conditional Multi-Aspect Synthetic Data Generation
Jiaming Shen
Ran Xu
Yennie Jun
Zhen Qin
Tianqi Liu
Carl Yang
Yi Liang
Simon Baumgartner
Michael Bendersky
SyDa
55
4
0
22 Jul 2024
MACSum: Controllable Summarization with Mixed Attributes
Yusen Zhang
Yang Liu
Ziyi Yang
Yuwei Fang
Yulong Chen
Dragomir R. Radev
Chenguang Zhu
Michael Zeng
Rui Zhang
24
15
0
09 Nov 2022
Disentangling Active and Passive Cosponsorship in the U.S. Congress
Giuseppe Russo
Christoph Gote
L. Brandenberger
Sophia Schlosser
F. Schweitzer
LLMSV
AI4CE
16
7
0
19 May 2022
Controllable Dialogue Generation with Disentangled Multi-grained Style Specification and Attribute Consistency Reward
Zhe Hu
Zhiwei Cao
Hou Pong Chan
Jiachen Liu
Xinyan Xiao
Jinsong Su
Hua-Hong Wu
24
9
0
14 Sep 2021
Convolutional Neural Networks for Sentence Classification
Yoon Kim
AILaw
VLM
250
13,360
0
25 Aug 2014
1