ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2004.14983
  4. Cited By
Control, Generate, Augment: A Scalable Framework for Multi-Attribute
  Text Generation

Control, Generate, Augment: A Scalable Framework for Multi-Attribute Text Generation

30 April 2020
Giuseppe Russo
Nora Hollenstein
C. Musat
Ce Zhang
    BDL
ArXivPDFHTML

Papers citing "Control, Generate, Augment: A Scalable Framework for Multi-Attribute Text Generation"

5 / 5 papers shown
Title
Boosting Reward Model with Preference-Conditional Multi-Aspect Synthetic Data Generation
Boosting Reward Model with Preference-Conditional Multi-Aspect Synthetic Data Generation
Jiaming Shen
Ran Xu
Yennie Jun
Zhen Qin
Tianqi Liu
Carl Yang
Yi Liang
Simon Baumgartner
Michael Bendersky
SyDa
55
4
0
22 Jul 2024
MACSum: Controllable Summarization with Mixed Attributes
MACSum: Controllable Summarization with Mixed Attributes
Yusen Zhang
Yang Liu
Ziyi Yang
Yuwei Fang
Yulong Chen
Dragomir R. Radev
Chenguang Zhu
Michael Zeng
Rui Zhang
24
15
0
09 Nov 2022
Disentangling Active and Passive Cosponsorship in the U.S. Congress
Disentangling Active and Passive Cosponsorship in the U.S. Congress
Giuseppe Russo
Christoph Gote
L. Brandenberger
Sophia Schlosser
F. Schweitzer
LLMSV
AI4CE
16
7
0
19 May 2022
Controllable Dialogue Generation with Disentangled Multi-grained Style
  Specification and Attribute Consistency Reward
Controllable Dialogue Generation with Disentangled Multi-grained Style Specification and Attribute Consistency Reward
Zhe Hu
Zhiwei Cao
Hou Pong Chan
Jiachen Liu
Xinyan Xiao
Jinsong Su
Hua-Hong Wu
24
9
0
14 Sep 2021
Convolutional Neural Networks for Sentence Classification
Convolutional Neural Networks for Sentence Classification
Yoon Kim
AILaw
VLM
250
13,360
0
25 Aug 2014
1