Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2006.14651
Cited By
Influence Functions in Deep Learning Are Fragile
25 June 2020
S. Basu
Phillip E. Pope
S. Feizi
TDI
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Influence Functions in Deep Learning Are Fragile"
50 / 154 papers shown
Title
Learning to Counterfactually Explain Recommendations
Yuanshun Yao
Chong Wang
Hang Li
CML
OffRL
22
1
0
17 Nov 2022
Explainer Divergence Scores (EDS): Some Post-Hoc Explanations May be Effective for Detecting Unknown Spurious Correlations
Shea Cardozo
Gabriel Islas Montero
Dmitry Kazhdan
B. Dimanov
Maleakhi A. Wijaya
M. Jamnik
Pietro Lio'
AAML
20
0
0
14 Nov 2022
ASIF: Coupled Data Turns Unimodal Models to Multimodal Without Training
Antonio Norelli
Marco Fumero
Valentino Maiorca
Luca Moschella
Emanuele Rodolà
Francesco Locatello
VLM
81
33
0
04 Oct 2022
Understanding Influence Functions and Datamodels via Harmonic Analysis
Nikunj Saunshi
Arushi Gupta
M. Braverman
Sanjeev Arora
TDI
60
17
0
03 Oct 2022
Towards Faithful Model Explanation in NLP: A Survey
Qing Lyu
Marianna Apidianaki
Chris Callison-Burch
XAI
109
107
0
22 Sep 2022
If Influence Functions are the Answer, Then What is the Question?
Juhan Bae
Nathan Ng
Alston Lo
Marzyeh Ghassemi
Roger C. Grosse
TDI
16
88
0
12 Sep 2022
Leveraging Explanations in Interactive Machine Learning: An Overview
Stefano Teso
Öznur Alkan
Wolfgang Stammer
Elizabeth M. Daly
XAI
FAtt
LRM
26
62
0
29 Jul 2022
JAWS: Auditing Predictive Uncertainty Under Covariate Shift
Drew Prinster
Anqi Liu
S. Saria
11
11
0
21 Jul 2022
Understanding Instance-Level Impact of Fairness Constraints
Jialu Wang
X. Wang
Yang Liu
TDI
FaML
12
33
0
30 Jun 2022
Measuring the Effect of Training Data on Deep Learning Predictions via Randomized Experiments
Jinkun Lin
Anqi Zhang
Mathias Lécuyer
Jinyang Li
Aurojit Panda
S. Sen
TDI
FedML
21
52
0
20 Jun 2022
Understanding Programmatic Weak Supervision via Source-aware Influence Function
Jieyu Zhang
Hong Wang
Cheng-Yu Hsieh
Alexander Ratner
TDI
34
9
0
25 May 2022
ORCA: Interpreting Prompted Language Models via Locating Supporting Data Evidence in the Ocean of Pretraining Data
Xiaochuang Han
Yulia Tsvetkov
19
27
0
25 May 2022
Towards Tracing Factual Knowledge in Language Models Back to the Training Data
Ekin Akyürek
Tolga Bolukbasi
Frederick Liu
Binbin Xiong
Ian Tenney
Jacob Andreas
Kelvin Guu
HILM
11
11
0
23 May 2022
Adapting and Evaluating Influence-Estimation Methods for Gradient-Boosted Decision Trees
Jonathan Brophy
Zayd Hammoudeh
Daniel Lowd
TDI
19
22
0
30 Apr 2022
Indiscriminate Data Poisoning Attacks on Neural Networks
Yiwei Lu
Gautam Kamath
Yaoliang Yu
AAML
28
24
0
19 Apr 2022
Deep Unlearning via Randomized Conditionally Independent Hessians
Ronak R. Mehta
Sourav Pal
Vikas Singh
Sathya Ravi
MU
16
81
0
15 Apr 2022
Phenomenology of Double Descent in Finite-Width Neural Networks
Sidak Pal Singh
Aurélien Lucchi
Thomas Hofmann
Bernhard Schölkopf
13
10
0
14 Mar 2022
Understanding Rare Spurious Correlations in Neural Networks
Yao-Yuan Yang
Chi-Ning Chou
Kamalika Chaudhuri
AAML
16
25
0
10 Feb 2022
Approximating Full Conformal Prediction at Scale via Influence Functions
Javier Abad
Umang Bhatt
Adrian Weller
Giovanni Cherubin
29
10
0
02 Feb 2022
Datamodels: Predicting Predictions from Training Data
Andrew Ilyas
Sung Min Park
Logan Engstrom
Guillaume Leclerc
A. Madry
TDI
35
130
0
01 Feb 2022
A Comprehensive Study of Image Classification Model Sensitivity to Foregrounds, Backgrounds, and Visual Attributes
Mazda Moayeri
Phillip E. Pope
Yogesh Balaji
S. Feizi
VLM
33
52
0
26 Jan 2022
Identifying a Training-Set Attack's Target Using Renormalized Influence Estimation
Zayd Hammoudeh
Daniel Lowd
TDI
18
28
0
25 Jan 2022
FairIF: Boosting Fairness in Deep Learning via Influence Functions with Validation Set Sensitive Attributes
Haonan Wang
Ziwei Wu
Jingrui He
19
12
0
15 Jan 2022
Consistent Approximations in Composite Optimization
J. Royset
14
8
0
13 Jan 2022
Counterfactual Memorization in Neural Language Models
Chiyuan Zhang
Daphne Ippolito
Katherine Lee
Matthew Jagielski
Florian Tramèr
Nicholas Carlini
24
128
0
24 Dec 2021
Rethinking Influence Functions of Neural Networks in the Over-parameterized Regime
Rui Zhang
Shihua Zhang
TDI
19
21
0
15 Dec 2021
Scaling Up Influence Functions
Andrea Schioppa
Polina Zablotskaia
David Vilar
Artem Sokolov
TDI
25
90
0
06 Dec 2021
SHAPr: An Efficient and Versatile Membership Privacy Risk Metric for Machine Learning
Vasisht Duddu
S. Szyller
Nadarajah Asokan
24
12
0
04 Dec 2021
ModelPred: A Framework for Predicting Trained Model from Training Data
Yingyan Zeng
Jiachen T. Wang
Si-An Chen
H. Just
Ran Jin
R. Jia
TDI
MU
25
2
0
24 Nov 2021
Revisiting Methods for Finding Influential Examples
Karthikeyan K
Anders Søgaard
TDI
14
30
0
08 Nov 2021
Quantifying Epistemic Uncertainty in Deep Learning
Ziyi Huang
H. Lam
Haofeng Zhang
UQCV
BDL
UD
PER
6
12
0
23 Oct 2021
Poison Forensics: Traceback of Data Poisoning Attacks in Neural Networks
Shawn Shan
A. Bhagoji
Haitao Zheng
Ben Y. Zhao
AAML
86
50
0
13 Oct 2021
Influence Tuning: Demoting Spurious Correlations via Instance Attribution and Instance-Driven Updates
Xiaochuang Han
Yulia Tsvetkov
TDI
15
30
0
07 Oct 2021
Machine Unlearning of Features and Labels
Alexander Warnecke
Lukas Pirch
Christian Wressnegger
Konrad Rieck
MU
6
171
0
26 Aug 2021
Seven challenges for harmonizing explainability requirements
Jiahao Chen
Victor Storchan
23
8
0
11 Aug 2021
Combining Feature and Instance Attribution to Detect Artifacts
Pouya Pezeshkpour
Sarthak Jain
Sameer Singh
Byron C. Wallace
TDI
18
43
0
01 Jul 2021
Adversarial Examples Make Strong Poisons
Liam H. Fowl
Micah Goldblum
Ping Yeh-Chiang
Jonas Geiping
Wojtek Czaja
Tom Goldstein
SILM
23
131
0
21 Jun 2021
On Sample Based Explanation Methods for NLP:Efficiency, Faithfulness, and Semantic Evaluation
Wei Zhang
Ziming Huang
Yada Zhu
Guangnan Ye
Xiaodong Cui
Fan Zhang
23
17
0
09 Jun 2021
Interactive Label Cleaning with Example-based Explanations
Stefano Teso
A. Bontempelli
Fausto Giunchiglia
Andrea Passerini
30
45
0
07 Jun 2021
On Memorization in Probabilistic Deep Generative Models
G. V. D. Burg
Christopher K. I. Williams
TDI
20
58
0
06 Jun 2021
Locally Valid and Discriminative Prediction Intervals for Deep Learning Models
Zhen Lin
Shubhendu Trivedi
Jimeng Sun
24
20
0
01 Jun 2021
An Empirical Comparison of Instance Attribution Methods for NLP
Pouya Pezeshkpour
Sarthak Jain
Byron C. Wallace
Sameer Singh
TDI
13
35
0
09 Apr 2021
Intuitively Assessing ML Model Reliability through Example-Based Explanations and Editing Model Inputs
Harini Suresh
Kathleen M. Lewis
John Guttag
Arvind Satyanarayan
FAtt
34
25
0
17 Feb 2021
Out-of-Distribution Generalization Analysis via Influence Function
Haotian Ye
Chuanlong Xie
Yue Liu
Zhenguo Li
OOD
14
13
0
21 Jan 2021
Estimating informativeness of samples with Smooth Unique Information
Hrayr Harutyunyan
Alessandro Achille
Giovanni Paolini
Orchid Majumder
Avinash Ravichandran
Rahul Bhotika
Stefano Soatto
16
24
0
17 Jan 2021
FastIF: Scalable Influence Functions for Efficient Model Interpretation and Debugging
Han Guo
Nazneen Rajani
Peter Hase
Mohit Bansal
Caiming Xiong
TDI
24
102
0
31 Dec 2020
LQF: Linear Quadratic Fine-Tuning
Alessandro Achille
Aditya Golatkar
Avinash Ravichandran
M. Polito
Stefano Soatto
19
27
0
21 Dec 2020
Dataset Security for Machine Learning: Data Poisoning, Backdoor Attacks, and Defenses
Micah Goldblum
Dimitris Tsipras
Chulin Xie
Xinyun Chen
Avi Schwarzschild
D. Song
A. Madry
Bo-wen Li
Tom Goldstein
SILM
13
270
0
18 Dec 2020
Quantizing data for distributed learning
Osama A. Hanna
Yahya H. Ezzeldin
Christina Fragouli
Suhas Diggavi
FedML
39
20
0
14 Dec 2020
Data Appraisal Without Data Sharing
Mimee Xu
L. V. D. van der Maaten
Awni Y. Hannun
TDI
26
6
0
11 Dec 2020
Previous
1
2
3
4
Next