Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
2007.02617
Cited By
v1
v2 (latest)
Understanding and Improving Fast Adversarial Training
6 July 2020
Maksym Andriushchenko
Nicolas Flammarion
AAML
Re-assign community
ArXiv (abs)
PDF
HTML
Github (95★)
Papers citing
"Understanding and Improving Fast Adversarial Training"
50 / 200 papers shown
Improving Generalization via Uncertainty Driven Perturbations
Matteo Pagliardini
Gilberto Manunza
Martin Jaggi
Sai Li
Tatjana Chavdarova
AAML
AI4CE
219
4
0
11 Feb 2022
Fast Adversarial Training with Noise Augmentation: A Unified Perspective on RandStart and GradAlign
Axi Niu
Kang Zhang
Chaoning Zhang
Chenshuang Zhang
In So Kweon
Chang D. Yoo
Yanning Zhang
AAML
213
6
0
11 Feb 2022
Layer-wise Regularized Adversarial Training using Layers Sustainability Analysis (LSA) framework
Neurocomputing (Neurocomputing), 2022
Mohammad Khalooei
M. Homayounpour
M. Amirmazlaghani
AAML
234
4
0
05 Feb 2022
Make Some Noise: Reliable and Efficient Single-Step Adversarial Training
Neural Information Processing Systems (NeurIPS), 2022
Pau de Jorge
Adel Bibi
Riccardo Volpi
Amartya Sanyal
Juil Sock
Grégory Rogez
P. Dokania
AAML
328
56
0
02 Feb 2022
Scale-Invariant Adversarial Attack for Evaluating and Enhancing Adversarial Defenses
Mengting Xu
Tao Zhang
Zhongnian Li
Daoqiang Zhang
AAML
150
2
0
29 Jan 2022
Revisiting and Advancing Fast Adversarial Training Through The Lens of Bi-Level Optimization
International Conference on Machine Learning (ICML), 2021
Yihua Zhang
Guanhua Zhang
Prashant Khanduri
Min-Fong Hong
Shiyu Chang
Sijia Liu
AAML
697
101
0
23 Dec 2021
ℓ
∞
\ell_\infty
ℓ
∞
-Robustness and Beyond: Unleashing Efficient Adversarial Training
H. M. Dolatabadi
S. Erfani
C. Leckie
OOD
AAML
199
12
0
01 Dec 2021
Subspace Adversarial Training
Tao Li
Yingwen Wu
Sizhe Chen
Kun Fang
Xiaolin Huang
AAML
OOD
289
66
0
24 Nov 2021
Local Linearity and Double Descent in Catastrophic Overfitting
Varun Sivashankar
Nikil Selvam
AAML
61
0
0
21 Nov 2021
Robust and Accurate Object Detection via Self-Knowledge Distillation
International Conference on Information Photonics (ICIP), 2021
Weipeng Xu
Pengzhi Chu
Renhao Xie
Xiongziyan Xiao
Hongcheng Huang
AAML
ObjD
149
5
0
14 Nov 2021
MixACM: Mixup-Based Robustness Transfer via Distillation of Activated Channel Maps
Neural Information Processing Systems (NeurIPS), 2021
Muhammad Awais
Fengwei Zhou
Chuanlong Xie
Jiawei Li
Sung-Ho Bae
Zhenguo Li
AAML
201
20
0
09 Nov 2021
Meta-Learning the Search Distribution of Black-Box Random Search Based Adversarial Attacks
Neural Information Processing Systems (NeurIPS), 2021
Maksym Yatsura
J. H. Metzen
Matthias Hein
OOD
413
15
0
02 Nov 2021
Improving Local Effectiveness for Global robust training
Jingyue Lu
M. P. Kumar
AAML
132
0
0
26 Oct 2021
DI-AA: An Interpretable White-box Attack for Fooling Deep Neural Networks
Yixiang Wang
Jiqiang Liu
Xiaolin Chang
Jianhua Wang
Ricardo J. Rodríguez
AAML
193
38
0
14 Oct 2021
Boosting Fast Adversarial Training with Learnable Adversarial Initialization
IEEE Transactions on Image Processing (TIP), 2021
Yang Liu
Yong Zhang
Baoyuan Wu
Jue Wang
Xiaochun Cao
AAML
311
65
0
11 Oct 2021
Calibrated Adversarial Training
Tianjin Huang
Vlado Menkovski
Yulong Pei
Mykola Pechenizkiy
AAML
224
3
0
01 Oct 2021
BulletTrain: Accelerating Robust Neural Network Training via Boundary Example Mining
Weizhe Hua
Yichi Zhang
Chuan Guo
Zhiru Zhang
G. E. Suh
OOD
223
19
0
29 Sep 2021
SoK: Machine Learning Governance
Varun Chandrasekaran
Hengrui Jia
Anvith Thudi
Adelin Travers
Mohammad Yaghini
Nicolas Papernot
271
20
0
20 Sep 2021
Adaptive perturbation adversarial training: based on reinforcement learning
Zhi-pin Nie
Ying Lin
Sp Ren
Lan Zhang
AAML
139
1
0
30 Aug 2021
Advances in adversarial attacks and defenses in computer vision: A survey
Naveed Akhtar
Lin Wang
Navid Kardan
M. Shah
AAML
479
298
0
01 Aug 2021
Single-Step Adversarial Training for Semantic Segmentation
International Conference on Pattern Recognition Applications and Methods (ICPRAM), 2021
D. Wiens
Barbara Hammer
SSeg
AAML
135
1
0
30 Jun 2021
Multi-stage Optimization based Adversarial Training
Xiaosen Wang
Chuanbiao Song
Liwei Wang
Kun He
AAML
114
5
0
26 Jun 2021
Probabilistic Margins for Instance Reweighting in Adversarial Training
Neural Information Processing Systems (NeurIPS), 2021
Qizhou Wang
Yifan Zhang
Bo Han
Tongliang Liu
Chen Gong
Gang Niu
Mingyuan Zhou
Masashi Sugiyama
AAML
203
74
0
15 Jun 2021
RobustNav: Towards Benchmarking Robustness in Embodied Navigation
IEEE International Conference on Computer Vision (ICCV), 2021
Prithvijit Chattopadhyay
Judy Hoffman
Roozbeh Mottaghi
Aniruddha Kembhavi
285
67
0
08 Jun 2021
Concurrent Adversarial Learning for Large-Batch Training
International Conference on Learning Representations (ICLR), 2021
Yong Liu
Xiangning Chen
Minhao Cheng
Cho-Jui Hsieh
Yang You
ODL
210
13
0
01 Jun 2021
Two Coupled Rejection Metrics Can Tell Adversarial Examples Apart
Computer Vision and Pattern Recognition (CVPR), 2021
Tianyu Pang
Huishuai Zhang
Di He
Yinpeng Dong
Hang Su
Wei Chen
Jun Zhu
Tie-Yan Liu
AAML
217
23
0
31 May 2021
Deep Repulsive Prototypes for Adversarial Robustness
A. Serban
E. Poll
Joost Visser
OOD
153
3
0
26 May 2021
Understanding Catastrophic Overfitting in Adversarial Training
Peilin Kang
Seyed-Mohsen Moosavi-Dezfooli
AAML
132
17
0
06 May 2021
Relating Adversarially Robust Generalization to Flat Minima
IEEE International Conference on Computer Vision (ICCV), 2021
David Stutz
Matthias Hein
Bernt Schiele
OOD
270
78
0
09 Apr 2021
The art of defense: letting networks fool the attacker
IEEE Transactions on Information Forensics and Security (IEEE TIFS), 2021
Jinlai Zhang
Lyvjie Chen
Binbin Liu
Bojun Ouyang
Jihong Zhu
Minchi Kuang
Houqing Wang
Yanmei Meng
AAML
3DPC
307
19
0
07 Apr 2021
Reliably fast adversarial training via latent adversarial perturbation
IEEE International Conference on Computer Vision (ICCV), 2021
Geon Yeong Park
Sang Wan Lee
AAML
181
33
0
04 Apr 2021
Domain Invariant Adversarial Learning
Matan Levi
Idan Attias
A. Kontorovich
AAML
OOD
513
12
0
01 Apr 2021
ZeroGrad : Mitigating and Explaining Catastrophic Overfitting in FGSM Adversarial Training
Zeinab Golgooni
Mehrdad Saberi
Masih Eskandar
M. Rohban
AAML
74
17
0
29 Mar 2021
Lagrangian Objective Function Leads to Improved Unforeseen Attack Generalization in Adversarial Training
Machine-mediated learning (ML), 2021
Mohammad Azizmalayeri
M. Rohban
OOD
196
5
0
29 Mar 2021
Adversarial Feature Augmentation and Normalization for Visual Recognition
Tianlong Chen
Yu Cheng
Zhe Gan
Jianfeng Wang
Lijuan Wang
Zinan Lin
Jingjing Liu
AAML
ViT
136
21
0
22 Mar 2021
DAFAR: Defending against Adversaries by Feedback-Autoencoder Reconstruction
Haowen Liu
Ping Yi
Hsiao-Ying Lin
Jie Shi
Weidong Qiu
AAML
121
2
0
11 Mar 2021
Dynamic Efficient Adversarial Training Guided by Gradient Magnitude
Fu Lee Wang
Yanghao Zhang
Yanbin Zheng
Wenjie Ruan
181
1
0
04 Mar 2021
On the effectiveness of adversarial training against common corruptions
Conference on Uncertainty in Artificial Intelligence (UAI), 2021
Klim Kireev
Maksym Andriushchenko
Nicolas Flammarion
AAML
328
112
0
03 Mar 2021
On Fast Adversarial Robustness Adaptation in Model-Agnostic Meta-Learning
International Conference on Learning Representations (ICLR), 2021
Ren Wang
Kaidi Xu
Sijia Liu
Pin-Yu Chen
Tsui-Wei Weng
Chuang Gan
Meng Wang
AAML
246
53
0
20 Feb 2021
Robust Single-step Adversarial Training with Regularizer
Chinese Conference on Pattern Recognition and Computer Vision (CPRCV), 2021
Lehui Xie
Yaopeng Wang
Jianwei Yin
Ximeng Liu
AAML
96
1
0
05 Feb 2021
Recent Advances in Adversarial Training for Adversarial Robustness
International Joint Conference on Artificial Intelligence (IJCAI), 2021
Tao Bai
Jinqi Luo
Jun Zhao
Bihan Wen
Qian Wang
AAML
505
576
0
02 Feb 2021
Understanding and Increasing Efficiency of Frank-Wolfe Adversarial Training
Computer Vision and Pattern Recognition (CVPR), 2020
Theodoros Tsiligkaridis
Jay Roberts
AAML
483
14
0
22 Dec 2020
Using Feature Alignment Can Improve Clean Average Precision and Adversarial Robustness in Object Detection
Weipeng Xu
Hongcheng Huang
Shaoyou Pan
ObjD
209
8
0
08 Dec 2020
Recent Advances in Understanding Adversarial Robustness of Deep Neural Networks
Tao Bai
Jinqi Luo
Jun Zhao
AAML
238
8
0
03 Nov 2020
RobustBench: a standardized adversarial robustness benchmark
Francesco Croce
Maksym Andriushchenko
Vikash Sehwag
Edoardo Debenedetti
Nicolas Flammarion
M. Chiang
Prateek Mittal
Matthias Hein
VLM
747
818
0
19 Oct 2020
Optimism in the Face of Adversity: Understanding and Improving Deep Learning through Adversarial Robustness
Proceedings of the IEEE (Proc. IEEE), 2020
Guillermo Ortiz-Jiménez
Apostolos Modas
Seyed-Mohsen Moosavi-Dezfooli
P. Frossard
AAML
356
50
0
19 Oct 2020
Uncovering the Limits of Adversarial Training against Norm-Bounded Adversarial Examples
Sven Gowal
Chongli Qin
J. Uesato
Timothy A. Mann
Pushmeet Kohli
AAML
470
361
0
07 Oct 2020
Understanding Catastrophic Overfitting in Single-step Adversarial Training
AAAI Conference on Artificial Intelligence (AAAI), 2020
Hoki Kim
Woojin Lee
Jaewook Lee
AAML
392
124
0
05 Oct 2020
Efficient Robust Training via Backward Smoothing
AAAI Conference on Artificial Intelligence (AAAI), 2020
Jinghui Chen
Yu Cheng
Zhe Gan
Quanquan Gu
Jingjing Liu
AAML
192
44
0
03 Oct 2020
Bag of Tricks for Adversarial Training
International Conference on Learning Representations (ICLR), 2020
Tianyu Pang
Xiao Yang
Yinpeng Dong
Hang Su
Jun Zhu
AAML
364
274
0
01 Oct 2020
Previous
1
2
3
4