ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.03783
  4. Cited By
An Information-theoretic Approach to Distribution Shifts

An Information-theoretic Approach to Distribution Shifts

7 June 2021
Marco Federici
Ryota Tomioka
Patrick Forré
    OOD
ArXivPDFHTML

Papers citing "An Information-theoretic Approach to Distribution Shifts"

19 / 19 papers shown
Title
Domain Adaptation and Entanglement: an Optimal Transport Perspective
Okan Koç
Alexander Soen
Chao-Kai Chiang
Masashi Sugiyama
OOD
AAML
67
0
0
11 Mar 2025
Out-of-Distribution Recovery with Object-Centric Keypoint Inverse Policy for Visuomotor Imitation Learning
Out-of-Distribution Recovery with Object-Centric Keypoint Inverse Policy for Visuomotor Imitation Learning
George Jiayuan Gao
Tianyu Li
Nadia Figueroa
38
0
0
05 Nov 2024
Invariant Graph Learning Meets Information Bottleneck for Out-of-Distribution Generalization
Invariant Graph Learning Meets Information Bottleneck for Out-of-Distribution Generalization
Wenyu Mao
Jiancan Wu
Haoyang Liu
Yongduo Sui
Xiang Wang
OOD
39
2
0
03 Aug 2024
When Invariant Representation Learning Meets Label Shift: Insufficiency
  and Theoretical Insights
When Invariant Representation Learning Meets Label Shift: Insufficiency and Theoretical Insights
You-Wei Luo
Chuan-Xian Ren
OOD
40
1
0
24 Jun 2024
How Does Distribution Matching Help Domain Generalization: An
  Information-theoretic Analysis
How Does Distribution Matching Help Domain Generalization: An Information-theoretic Analysis
Yuxin Dong
Tieliang Gong
Hong Chen
Shuangyong Song
Weizhan Zhang
Chen Li
OOD
39
0
0
14 Jun 2024
Environment-Aware Dynamic Graph Learning for Out-of-Distribution
  Generalization
Environment-Aware Dynamic Graph Learning for Out-of-Distribution Generalization
Haonan Yuan
Qingyun Sun
Xingcheng Fu
Ziwei Zhang
Cheng Ji
Hao Peng
Jianxin Li
OOD
25
16
0
18 Nov 2023
Identifiability Results for Multimodal Contrastive Learning
Identifiability Results for Multimodal Contrastive Learning
Imant Daunhawer
Alice Bizeul
Emanuele Palumbo
Alexander Marx
Julia E. Vogt
32
38
0
16 Mar 2023
Exploring Predictive Uncertainty and Calibration in NLP: A Study on the
  Impact of Method & Data Scarcity
Exploring Predictive Uncertainty and Calibration in NLP: A Study on the Impact of Method & Data Scarcity
Dennis Ulmer
J. Frellsen
Christian Hardmeier
185
22
0
20 Oct 2022
Measuring and signing fairness as performance under multiple stakeholder
  distributions
Measuring and signing fairness as performance under multiple stakeholder distributions
David Lopez-Paz
Diane Bouchacourt
Levent Sagun
Nicolas Usunier
24
7
0
20 Jul 2022
Finding Diverse and Predictable Subgraphs for Graph Domain
  Generalization
Finding Diverse and Predictable Subgraphs for Graph Domain Generalization
Junchi Yu
Jian Liang
Ran He
OOD
23
11
0
19 Jun 2022
Generalizing to Evolving Domains with Latent Structure-Aware Sequential
  Autoencoder
Generalizing to Evolving Domains with Latent Structure-Aware Sequential Autoencoder
Tiexin Qin
Shiqi Wang
Haoliang Li
CML
BDL
20
22
0
16 May 2022
Testing robustness of predictions of trained classifiers against
  naturally occurring perturbations
Testing robustness of predictions of trained classifiers against naturally occurring perturbations
S. Scher
A. Trugler
OOD
AAML
25
1
0
21 Apr 2022
A benchmark with decomposed distribution shifts for 360 monocular depth
  estimation
A benchmark with decomposed distribution shifts for 360 monocular depth estimation
G. Albanis
N. Zioulis
Petros Drakoulis
Federico Álvarez
D. Zarpalas
P. Daras
MDE
34
0
0
01 Dec 2021
Deep Visual Domain Adaptation
Deep Visual Domain Adaptation
G. Csurka
OOD
138
185
0
28 Dec 2020
Out-of-Distribution Generalization via Risk Extrapolation (REx)
Out-of-Distribution Generalization via Risk Extrapolation (REx)
David M. Krueger
Ethan Caballero
J. Jacobsen
Amy Zhang
Jonathan Binas
Dinghuai Zhang
Rémi Le Priol
Aaron Courville
OOD
215
901
0
02 Mar 2020
A Survey on Bias and Fairness in Machine Learning
A Survey on Bias and Fairness in Machine Learning
Ninareh Mehrabi
Fred Morstatter
N. Saxena
Kristina Lerman
Aram Galstyan
SyDa
FaML
323
4,203
0
23 Aug 2019
A statistical framework for fair predictive algorithms
A statistical framework for fair predictive algorithms
K. Lum
J. Johndrow
FaML
174
104
0
25 Oct 2016
Fair prediction with disparate impact: A study of bias in recidivism
  prediction instruments
Fair prediction with disparate impact: A study of bias in recidivism prediction instruments
Alexandra Chouldechova
FaML
207
2,082
0
24 Oct 2016
Domain Adaptation: Learning Bounds and Algorithms
Domain Adaptation: Learning Bounds and Algorithms
Yishay Mansour
M. Mohri
Afshin Rostamizadeh
179
789
0
19 Feb 2009
1