Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2106.14806
Cited By
Laplace Redux -- Effortless Bayesian Deep Learning
28 June 2021
Erik A. Daxberger
Agustinus Kristiadi
Alexander Immer
Runa Eschenhagen
Matthias Bauer
Philipp Hennig
BDL
UQCV
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Laplace Redux -- Effortless Bayesian Deep Learning"
50 / 211 papers shown
Title
Flexible Heteroscedastic Count Regression with Deep Double Poisson Networks
Spencer Young
P. Jenkins
Lonchao Da
Jeff Dotson
Hua Wei
UQCV
BDL
26
2
0
13 Jun 2024
How Useful is Intermittent, Asynchronous Expert Feedback for Bayesian Optimization?
Agustinus Kristiadi
Felix Strieth-Kalthoff
Sriram Ganapathi Subramanian
Vincent Fortuin
Pascal Poupart
Geoff Pleiss
39
2
0
10 Jun 2024
Linearization Turns Neural Operators into Function-Valued Gaussian Processes
Emilia Magnani
Marvin Pfortner
Tobias Weber
Philipp Hennig
UQCV
55
1
0
07 Jun 2024
Reparameterization invariance in approximate Bayesian inference
Hrittik Roy
M. Miani
Carl Henrik Ek
Philipp Hennig
Marvin Pfortner
Lukas Tatzel
Søren Hauberg
BDL
36
8
0
05 Jun 2024
Relaxed Quantile Regression: Prediction Intervals for Asymmetric Noise
T. Pouplin
Alan Jeffares
Nabeel Seedat
Mihaela van der Schaar
45
3
0
05 Jun 2024
Scalable Bayesian Learning with posteriors
Samuel Duffield
Kaelan Donatella
Johnathan Chiu
Phoebe Klett
Daniel Simpson
BDL
UQCV
43
1
0
31 May 2024
Evaluating Bayesian deep learning for radio galaxy classification
Devina Mohan
Anna M. M. Scaife
UQCV
BDL
31
1
0
28 May 2024
Gradients of Functions of Large Matrices
Nicholas Krämer
Pablo Moreno-Muñoz
Hrittik Roy
Søren Hauberg
27
0
0
27 May 2024
Credal Wrapper of Model Averaging for Uncertainty Estimation in Classification
Kaizheng Wang
Fabio Cuzzolin
Keivan K1 Shariatmadar
David Moens
Hans Hallez
UQCV
BDL
63
6
0
23 May 2024
Generalized Laplace Approximation
Yinsong Chen
Samson S. Yu
Zhong Li
Chee Peng Lim
BDL
43
0
0
22 May 2024
Gaussian Stochastic Weight Averaging for Bayesian Low-Rank Adaptation of Large Language Models
Emre Onal
Klemens Flöge
Emma Caldwell
A. Sheverdin
Vincent Fortuin
UQCV
BDL
32
9
0
06 May 2024
Making Better Use of Unlabelled Data in Bayesian Active Learning
Freddie Bickford-Smith
Adam Foster
Tom Rainforth
20
3
0
26 Apr 2024
Variational Bayesian Last Layers
James Harrison
John Willes
Jasper Snoek
BDL
UQCV
51
23
0
17 Apr 2024
Epistemic Uncertainty Quantification For Pre-trained Neural Network
Hanjing Wang
Qiang Ji
UQCV
18
2
0
15 Apr 2024
Fast Fishing: Approximating BAIT for Efficient and Scalable Deep Active Image Classification
Denis Huseljic
Paul Hahn
M. Herde
Lukas Rauch
Bernhard Sick
16
1
0
13 Apr 2024
Uncertainty Aware Tropical Cyclone Wind Speed Estimation from Satellite Data
Nils Lehmann
N. Gottschling
Stefan Depeweg
Eric T. Nalisnick
27
1
0
12 Apr 2024
On the Importance of Uncertainty in Decision-Making with Large Language Models
Nicolò Felicioni
Lucas Maystre
Sina Ghiassian
K. Ciosek
LLMAG
26
2
0
03 Apr 2024
Active Exploration in Bayesian Model-based Reinforcement Learning for Robot Manipulation
Carlos Plou
Ana C. Murillo
Ruben Martinez-Cantin
OffRL
14
0
0
02 Apr 2024
EventSleep: Sleep Activity Recognition with Event Cameras
Carlos Plou
Nerea Gallego
Alberto Sabater
Eduardo Montijano
Pablo Urcola
Luis Montesano
Ruben Martinez-Cantin
Ana C. Murillo
29
1
0
02 Apr 2024
Posterior Uncertainty Quantification in Neural Networks using Data Augmentation
Luhuan Wu
Sinead Williamson
UQCV
19
6
0
18 Mar 2024
Function-space Parameterization of Neural Networks for Sequential Learning
Aidan Scannell
Riccardo Mereu
Paul E. Chang
Ella Tamir
J. Pajarinen
Arno Solin
BDL
23
5
0
16 Mar 2024
A Framework for Strategic Discovery of Credible Neural Network Surrogate Models under Uncertainty
Pratyush Kumar Singh
Kathryn A. Farrell-Maupin
D. Faghihi
19
6
0
13 Mar 2024
A prediction rigidity formalism for low-cost uncertainties in trained neural networks
Filippo Bigi
Sanggyu Chong
Michele Ceriotti
Federico Grasselli
25
5
0
04 Mar 2024
Benchmarking Uncertainty Disentanglement: Specialized Uncertainties for Specialized Tasks
Bálint Mucsányi
Michael Kirchhof
Seong Joon Oh
UQCV
BDL
OODD
413
20
1
29 Feb 2024
Variational Learning is Effective for Large Deep Networks
Yuesong Shen
Nico Daheim
Bai Cong
Peter Nickl
Gian Maria Marconi
...
Rio Yokota
Iryna Gurevych
Daniel Cremers
Mohammad Emtiyaz Khan
Thomas Möllenhoff
30
21
0
27 Feb 2024
Bayesian Neural Network For Personalized Federated Learning Parameter Selection
Mengen Luo
E. Kuruoglu
FedML
19
0
0
25 Feb 2024
Trustworthy Personalized Bayesian Federated Learning via Posterior Fine-Tune
Mengen Luo
Chi Xu
E. Kuruoglu
FedML
16
0
0
25 Feb 2024
Shaving Weights with Occam's Razor: Bayesian Sparsification for Neural Networks Using the Marginal Likelihood
Rayen Dhahri
Alexander Immer
Bertrand Charpentier
Stephan Günnemann
Vincent Fortuin
BDL
UQCV
22
4
0
25 Feb 2024
Bayesian Neural Networks with Domain Knowledge Priors
Dylan Sam
Rattana Pukdee
Daniel P. Jeong
Yewon Byun
J. Zico Kolter
BDL
UQCV
30
9
0
20 Feb 2024
Bayesian Reward Models for LLM Alignment
Adam X. Yang
Maxime Robeyns
Thomas Coste
Zhengyan Shi
Jun Wang
Haitham Bou-Ammar
Laurence Aitchison
32
17
0
20 Feb 2024
BEARS Make Neuro-Symbolic Models Aware of their Reasoning Shortcuts
Emanuele Marconato
Samuele Bortolotti
Emile van Krieken
Antonio Vergari
Andrea Passerini
Stefano Teso
33
17
0
19 Feb 2024
Active Few-Shot Fine-Tuning
Jonas Hübotter
Bhavya Sukhija
Lenart Treven
Yarden As
Andreas Krause
28
1
0
13 Feb 2024
A Sober Look at LLMs for Material Discovery: Are They Actually Good for Bayesian Optimization Over Molecules?
Agustinus Kristiadi
Felix Strieth-Kalthoff
Marta Skreta
Pascal Poupart
Alán Aspuru-Guzik
Geoff Pleiss
15
19
0
07 Feb 2024
Bayesian Uncertainty for Gradient Aggregation in Multi-Task Learning
Idan Achituve
I. Diamant
Arnon Netzer
Gal Chechik
Ethan Fetaya
UQCV
22
3
0
06 Feb 2024
Partially Stochastic Infinitely Deep Bayesian Neural Networks
Sergio Calvo-Ordoñez
Matthieu Meunier
Francesco Piatti
Yuantao Shi
BDL
35
3
0
05 Feb 2024
Position: Bayesian Deep Learning is Needed in the Age of Large-Scale AI
Theodore Papamarkou
Maria Skoularidou
Konstantina Palla
Laurence Aitchison
Julyan Arbel
...
David Rügamer
Yee Whye Teh
Max Welling
Andrew Gordon Wilson
Ruqi Zhang
UQCV
BDL
35
27
0
01 Feb 2024
Bayesian Semi-structured Subspace Inference
Daniel Dold
David Rügamer
Beate Sick
Oliver Durr
BDL
8
1
0
23 Jan 2024
Make Me a BNN: A Simple Strategy for Estimating Bayesian Uncertainty from Pre-trained Models
Gianni Franchi
Olivier Laurent
Maxence Leguéry
Andrei Bursuc
Andrea Pilzer
Angela Yao
UQCV
BDL
15
3
0
23 Dec 2023
Do Bayesian Neural Networks Improve Weapon System Predictive Maintenance?
Michael L. Potter
Miru D. Jun
10
0
0
16 Dec 2023
Structured Inverse-Free Natural Gradient: Memory-Efficient & Numerically-Stable KFAC
Wu Lin
Felix Dangel
Runa Eschenhagen
Kirill Neklyudov
Agustinus Kristiadi
Richard E. Turner
Alireza Makhzani
6
3
0
09 Dec 2023
Perspectives on the State and Future of Deep Learning - 2023
Micah Goldblum
A. Anandkumar
Richard Baraniuk
Tom Goldstein
Kyunghyun Cho
Zachary Chase Lipton
Melanie Mitchell
Preetum Nakkiran
Max Welling
Andrew Gordon Wilson
48
4
0
07 Dec 2023
Transferable Candidate Proposal with Bounded Uncertainty
Kyeongryeol Go
Kye-Hyeon Kim
8
0
0
07 Dec 2023
Bootstrap Your Own Variance
Polina Turishcheva
Jason Ramapuram
Sinead Williamson
Dan Busbridge
Eeshan Gunesh Dhekane
Russ Webb
UQCV
13
0
0
06 Dec 2023
Uncertainty in Graph Contrastive Learning with Bayesian Neural Networks
Alexander M¨ollers
Alexander Immer
Elvin Isufi
Vincent Fortuin
SSL
BDL
UQCV
16
1
0
30 Nov 2023
FisherRF: Active View Selection and Uncertainty Quantification for Radiance Fields using Fisher Information
Wen Jiang
Boshu Lei
Kostas Daniilidis
3DGS
21
31
0
29 Nov 2023
On the Out-of-Distribution Coverage of Combining Split Conformal Prediction and Bayesian Deep Learning
Paul Scemama
Ariel Kapusta
15
0
0
21 Nov 2023
On the Out of Distribution Robustness of Foundation Models in Medical Image Segmentation
D. M. Nguyen
Tan Ngoc Pham
N. T. Diep
Nghi Quoc Phan
Quang-Cuong Pham
...
Ngan Hoang Le
Nhat Ho
Pengtao Xie
Daniel Sonntag
Mathias Niepert
VLM
UQCV
OOD
11
5
0
18 Nov 2023
Kronecker-Factored Approximate Curvature for Modern Neural Network Architectures
Runa Eschenhagen
Alexander Immer
Richard E. Turner
Frank Schneider
Philipp Hennig
40
21
0
01 Nov 2023
The Memory Perturbation Equation: Understanding Model's Sensitivity to Data
Peter Nickl
Lu Xu
Dharmesh Tailor
Thomas Möllenhoff
Mohammad Emtiyaz Khan
11
10
0
30 Oct 2023
Bayesian Domain Invariant Learning via Posterior Generalization of Parameter Distributions
Shiyu Shen
Bin Pan
Tianyang Shi
Tao Li
Zhenwei Shi
BDL
OOD
10
1
0
25 Oct 2023
Previous
1
2
3
4
5
Next