Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2106.14806
Cited By
Laplace Redux -- Effortless Bayesian Deep Learning
28 June 2021
Erik A. Daxberger
Agustinus Kristiadi
Alexander Immer
Runa Eschenhagen
Matthias Bauer
Philipp Hennig
BDL
UQCV
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Laplace Redux -- Effortless Bayesian Deep Learning"
50 / 211 papers shown
Title
Uncertainty-Weighted Image-Event Multimodal Fusion for Video Anomaly Detection
SungHeon Jeong
Jihong Park
Mohsen Imani
45
0
0
05 May 2025
Comparing Uncertainty Measurement and Mitigation Methods for Large Language Models: A Systematic Review
Toghrul Abbasli
Kentaroh Toyoda
Yuan Wang
Leon Witt
Muhammad Asif Ali
Yukai Miao
Dan Li
Qingsong Wei
UQCV
85
0
0
25 Apr 2025
Confidence Sequences for Generalized Linear Models via Regret Analysis
Eugenio Clerico
Hamish Flynn
W. Kotłowski
Gergely Neu
22
0
0
23 Apr 2025
Are you SURE? Enhancing Multimodal Pretraining with Missing Modalities through Uncertainty Estimation
Duy Nguyen
Quan Huu Do
Khoa D. Doan
Minh N. Do
27
0
0
18 Apr 2025
Uncertainty-Aware Trajectory Prediction via Rule-Regularized Heteroscedastic Deep Classification
Kumar Manas
Christian Schlauch
Adrian Paschke
Christian Wirth
Nadja Klein
35
0
0
17 Apr 2025
GOLLuM: Gaussian Process Optimized LLMs -- Reframing LLM Finetuning through Bayesian Optimization
Bojana Ranković
P. Schwaller
BDL
86
0
0
08 Apr 2025
UAC: Uncertainty-Aware Calibration of Neural Networks for Gesture Detection
Farida Al Haddad
Yuxin Wang
Malcolm Mielle
24
0
0
02 Apr 2025
Staying Alive: Online Neural Network Maintenance and Systemic Drift
Joshua Edward Hammond
Tyler Soderstrom
Brian A. Korgel
Michael Baldea
38
0
0
22 Mar 2025
Temporal Score Analysis for Understanding and Correcting Diffusion Artifacts
Yu Cao
Zengqun Zhao
Ioannis Patras
Shaogang Gong
DiffM
48
0
0
20 Mar 2025
FedBEns: One-Shot Federated Learning based on Bayesian Ensemble
Jacopo Talpini
Marco Savi
Giovanni Neglia
FedML
Presented at
ResearchTrend Connect | FedML
on
07 May 2025
71
0
0
19 Mar 2025
On Local Posterior Structure in Deep Ensembles
Mikkel Jordahn
Jonas Vestergaard Jensen
Mikkel N. Schmidt
Michael Riis Andersen
UQCV
BDL
OOD
51
0
0
17 Mar 2025
L-FUSION: Laplacian Fetal Ultrasound Segmentation & Uncertainty Estimation
J. Müller
Robert Wright
Thomas Day
Lorenzo Venturini
Samuel Budd
Hadrien Reynaud
J. Hajnal
Reza Razavi
B. Kainz
MedIm
59
0
0
13 Mar 2025
POp-GS: Next Best View in 3D-Gaussian Splatting with P-Optimality
Joey Wilson
Marcelino Almeida
Sachit Mahajan
Martin Labrie
Maani Ghaffari
Omid Ghasemalizadeh
Min Sun
Cheng-Hao Kuo
Arnab Sen
3DGS
53
0
0
10 Mar 2025
Uncertainty-Aware Decoding with Minimum Bayes Risk
Nico Daheim
Clara Meister
Thomas Möllenhoff
Iryna Gurevych
53
0
0
07 Mar 2025
Conceptualizing Uncertainty
Isaac Roberts
Alexander Schulz
Sarah Schroeder
Fabian Hinder
Barbara Hammer
UD
69
0
0
05 Mar 2025
Paths and Ambient Spaces in Neural Loss Landscapes
Daniel Dold
Julius Kobialka
Nicolai Palm
Emanuel Sommer
David Rügamer
Oliver Durr
AI4CE
56
0
0
05 Mar 2025
Discrete Codebook World Models for Continuous Control
Aidan Scannell
Mohammadreza Nakhaei
Kalle Kujanpää
Yi Zhao
Kevin Sebastian Luck
Arno Solin
J. Pajarinen
OffRL
47
0
0
01 Mar 2025
A Guide to Failure in Machine Learning: Reliability and Robustness from Foundations to Practice
Eric Heim
Oren Wright
David Shriver
OOD
FaML
63
0
0
01 Mar 2025
Generative Uncertainty in Diffusion Models
Metod Jazbec
Eliot Wong-Toi
Guoxuan Xia
Dan Zhang
Eric T. Nalisnick
Stephan Mandt
DiffM
43
0
0
28 Feb 2025
Logit Disagreement: OoD Detection with Bayesian Neural Networks
Kevin Raina
UQCV
BDL
UD
PER
59
0
0
24 Feb 2025
Uncertainty-Aware Adaptation of Large Language Models for Protein-Protein Interaction Analysis
Sanket R. Jantre
Tianle Wang
Gilchan Park
Kriti Chopra
Nicholas Jeon
Xiaoning Qian
Nathan M. Urban
Byung-Jun Yoon
57
0
0
10 Feb 2025
Optimal Subspace Inference for the Laplace Approximation of Bayesian Neural Networks
Josua Faller
Jörg Martin
BDL
73
0
0
04 Feb 2025
Position: Curvature Matrices Should Be Democratized via Linear Operators
Felix Dangel
Runa Eschenhagen
Weronika Ormaniec
Andres Fernandez
Lukas Tatzel
Agustinus Kristiadi
48
3
0
31 Jan 2025
BLoB: Bayesian Low-Rank Adaptation by Backpropagation for Large Language Models
Yibin Wang
H. Shi
Ligong Han
Dimitris N. Metaxas
Hao Wang
BDL
UQLM
102
6
0
28 Jan 2025
Commute Your Domains: Trajectory Optimality Criterion for Multi-Domain Learning
Alexey Rukhovich
Alexander Podolskiy
Irina Piontkovskaya
43
0
0
28 Jan 2025
Towards Robust Unsupervised Attention Prediction in Autonomous Driving
Mengshi Qi
Xiaoyang Bi
Pengfei Zhu
Huadong Ma
50
0
0
25 Jan 2025
Beyond Uncertainty: Risk-Aware Active View Acquisition for Safe Robot Navigation and 3D Scene Understanding with FisherRF
Guangyi Liu
Wen Jiang
Boshu Lei
Vivek Pandey
Kostas Daniilidis
N. Motee
44
8
0
20 Jan 2025
DistPred: A Distribution-Free Probabilistic Inference Method for Regression and Forecasting
Daojun Liang
Haixia Zhang
Dongfeng Yuan
UQCV
65
0
0
08 Jan 2025
Diffusion Model Guided Sampling with Pixel-Wise Aleatoric Uncertainty Estimation
Michele De Vita
Vasileios Belagiannis
DiffM
76
1
0
29 Nov 2024
Streamlining Prediction in Bayesian Deep Learning
Rui Li
Marcus Klasson
Arno Solin
Martin Trapp
UQCV
BDL
91
1
0
27 Nov 2024
Robust and Efficient Fine-tuning of LLMs with Bayesian Reparameterization of Low-Rank Adaptation
Ayan Sengupta
Vaibhav Seth
Arinjay Pathak
Natraj Raman
Sriram Gopalakrishnan
Tanmoy Chakraborty
BDL
21
2
0
07 Nov 2024
Stein Variational Newton Neural Network Ensembles
Klemens Flöge
Mohammed Abdul Moeed
Vincent Fortuin
BDL
UQCV
30
0
0
04 Nov 2024
Bayes without Underfitting: Fully Correlated Deep Learning Posteriors via Alternating Projections
M. Miani
Hrittik Roy
Søren Hauberg
UQCV
BDL
24
0
0
22 Oct 2024
Personalizing Low-Rank Bayesian Neural Networks Via Federated Learning
Boning Zhang
Dongzhu Liu
Osvaldo Simeone
Guanchu Wang
Dimitrios Pezaros
Guangxu Zhu
BDL
FedML
26
0
0
18 Oct 2024
Debiasing Mini-Batch Quadratics for Applications in Deep Learning
Lukas Tatzel
Bálint Mucsányi
Osane Hackel
Philipp Hennig
43
0
0
18 Oct 2024
Probabilistic Degeneracy Detection for Point-to-Plane Error Minimization
Johan Hatleskog
Kostas Alexis
3DPC
30
0
0
14 Oct 2024
Conformalized Reachable Sets for Obstacle Avoidance With Spheres
Yongseok Kwon
Jonathan Michaux
Seth Isaacson
Bohao Zhang
Matthew Ejakov
Katherine A. Skinner
Ram Vasudevan
34
2
0
13 Oct 2024
Efficient Weight-Space Laplace-Gaussian Filtering and Smoothing for Sequential Deep Learning
Joanna Sliwa
Frank Schneider
Nathanael Bosch
Agustinus Kristiadi
Philipp Hennig
BDL
CLL
29
2
0
09 Oct 2024
Next Best Sense: Guiding Vision and Touch with FisherRF for 3D Gaussian Splatting
Matthew Strong
Boshu Lei
Aiden Swann
Wen Jiang
Kostas Daniilidis
Monroe Kennedy III
3DGS
40
3
0
07 Oct 2024
Lightning UQ Box: A Comprehensive Framework for Uncertainty Quantification in Deep Learning
Nils Lehmann
Jakob Gawlikowski
Adam J. Stewart
Vytautas Jancauskas
Stefan Depeweg
Eric T. Nalisnick
N. Gottschling
35
0
0
04 Oct 2024
HGS-Planner: Hierarchical Planning Framework for Active Scene Reconstruction Using 3D Gaussian Splatting
Zijun Xu
Rui Jin
Ke Wu
Yi Zhao
Zhiwei Zhang
Jieru Zhao
Fei Gao
Zhongxue Gan
Wenchao Ding
37
3
0
26 Sep 2024
Manifold Sampling for Differentiable Uncertainty in Radiance Fields
Linjie Lyu
Ayush Tewari
Marc Habermann
Shunsuke Saito
Michael Zollhöfer
Thomas Leimkühler
Christian Theobalt
UQCV
31
1
0
19 Sep 2024
Realistic Extreme Behavior Generation for Improved AV Testing
Robert Dyro
Matthew Foutter
Ruolin Li
L. D. Lillo
Edward Schmerling
Xilin Zhou
Marco Pavone
AAML
23
1
0
16 Sep 2024
Sources of Uncertainty in 3D Scene Reconstruction
Marcus Klasson
Riccardo Mereu
Juho Kannala
Arno Solin
3DV
3DGS
31
3
0
10 Sep 2024
Epistemic Uncertainty and Observation Noise with the Neural Tangent Kernel
Sergio Calvo-Ordoñez
Konstantina Palla
Kamil Ciosek
23
1
0
06 Sep 2024
Gradient-free variational learning with conditional mixture networks
Conor Heins
Hao Wu
Dimitrije Marković
Alexander Tschantz
Jeff Beck
Christopher L. Buckley
BDL
17
2
0
29 Aug 2024
Flexible Bayesian Last Layer Models Using Implicit Priors and Diffusion Posterior Sampling
Jian Xu
Zhiqi Lin
Shigui Li
Min Chen
Junmei Yang
Delu Zeng
John Paisley
BDL
18
0
0
07 Aug 2024
High Frequency Matters: Uncertainty Guided Image Compression with Wavelet Diffusion
Juan Song
Jiaxiang He
Mingtao Feng
Keyan Wang
Yunsong Li
DiffM
41
4
0
17 Jul 2024
DADEE: Well-calibrated uncertainty quantification in neural networks for barriers-based robot safety
Masoud Ataei
Vikas Dhiman
18
0
0
30 Jun 2024
Flat Posterior Does Matter For Bayesian Model Averaging
Sungjun Lim
Jeyoon Yeom
Sooyon Kim
Hoyoon Byun
Jinho Kang
Yohan Jung
Jiyoung Jung
Kyungwoo Song
AAML
BDL
35
0
0
21 Jun 2024
1
2
3
4
5
Next