ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.14806
  4. Cited By
Laplace Redux -- Effortless Bayesian Deep Learning

Laplace Redux -- Effortless Bayesian Deep Learning

28 June 2021
Erik A. Daxberger
Agustinus Kristiadi
Alexander Immer
Runa Eschenhagen
Matthias Bauer
Philipp Hennig
    BDL
    UQCV
ArXivPDFHTML

Papers citing "Laplace Redux -- Effortless Bayesian Deep Learning"

50 / 211 papers shown
Title
Be Bayesian by Attachments to Catch More Uncertainty
Be Bayesian by Attachments to Catch More Uncertainty
Shiyu Shen
Bin Pan
Tianyang Shi
Tao Li
Zhenwei Shi
UQCV
22
0
0
19 Oct 2023
BayesDiff: Estimating Pixel-wise Uncertainty in Diffusion via Bayesian
  Inference
BayesDiff: Estimating Pixel-wise Uncertainty in Diffusion via Bayesian Inference
Siqi Kou
Lei Gan
Dequan Wang
Chongxuan Li
Zhijie Deng
BDL
DiffM
12
7
0
17 Oct 2023
A Symmetry-Aware Exploration of Bayesian Neural Network Posteriors
A Symmetry-Aware Exploration of Bayesian Neural Network Posteriors
Olivier Laurent
Emanuel Aldea
Gianni Franchi
BDL
UQCV
10
5
0
12 Oct 2023
Implicit Variational Inference for High-Dimensional Posteriors
Implicit Variational Inference for High-Dimensional Posteriors
Anshuk Uppal
Kristoffer Stensbo-Smidt
Wouter Boomsma
J. Frellsen
BDL
10
1
0
10 Oct 2023
Something for (almost) nothing: Improving deep ensemble calibration
  using unlabeled data
Something for (almost) nothing: Improving deep ensemble calibration using unlabeled data
Konstantinos Pitas
Julyan Arbel
BDL
UQCV
FedML
19
0
0
04 Oct 2023
FedLPA: One-shot Federated Learning with Layer-Wise Posterior
  Aggregation
FedLPA: One-shot Federated Learning with Layer-Wise Posterior Aggregation
Xiang Liu
Liangxi Liu
Feiyang Ye
Yunheng Shen
Xia Li
Linshan Jiang
Jialin Li
23
3
0
30 Sep 2023
On the Disconnect Between Theory and Practice of Neural Networks: Limits
  of the NTK Perspective
On the Disconnect Between Theory and Practice of Neural Networks: Limits of the NTK Perspective
Jonathan Wenger
Felix Dangel
Agustinus Kristiadi
20
0
0
29 Sep 2023
A Primer on Bayesian Neural Networks: Review and Debates
A Primer on Bayesian Neural Networks: Review and Debates
Federico Danieli
Konstantinos Pitas
M. Vladimirova
Vincent Fortuin
BDL
AAML
54
18
0
28 Sep 2023
Context-Aware Generative Models for Prediction of Aircraft Ground Tracks
Context-Aware Generative Models for Prediction of Aircraft Ground Tracks
Nick Pepper
George De Ath
Marc Thomas
Richard Everson
T. Dodwell
19
0
0
26 Sep 2023
Bayesian sparsification for deep neural networks with Bayesian model
  reduction
Bayesian sparsification for deep neural networks with Bayesian model reduction
Dimitrije Marković
K. Friston
S. Kiebel
BDL
UQCV
23
1
0
21 Sep 2023
Bayes' Rays: Uncertainty Quantification for Neural Radiance Fields
Bayes' Rays: Uncertainty Quantification for Neural Radiance Fields
Lily Goli
Cody Reading
Silvia Sellán
Alec Jacobson
Andrea Tagliasacchi
BDL
UQCV
21
59
0
06 Sep 2023
Sparse Function-space Representation of Neural Networks
Sparse Function-space Representation of Neural Networks
Aidan Scannell
Riccardo Mereu
Paul E. Chang
Ella Tamir
J. Pajarinen
Arno Solin
BDL
28
1
0
05 Sep 2023
Bayesian Low-rank Adaptation for Large Language Models
Bayesian Low-rank Adaptation for Large Language Models
Adam X. Yang
Maxime Robeyns
Xi Wang
Laurence Aitchison
AI4CE
BDL
11
44
0
24 Aug 2023
Towards Accelerated Model Training via Bayesian Data Selection
Towards Accelerated Model Training via Bayesian Data Selection
Zhijie Deng
Peng Cui
Jun Zhu
8
4
0
21 Aug 2023
Learning Expressive Priors for Generalization and Uncertainty Estimation
  in Neural Networks
Learning Expressive Priors for Generalization and Uncertainty Estimation in Neural Networks
Dominik Schnaus
Jongseok Lee
Daniel Cremers
Rudolph Triebel
UQCV
BDL
33
1
0
15 Jul 2023
Robust scalable initialization for Bayesian variational inference with
  multi-modal Laplace approximations
Robust scalable initialization for Bayesian variational inference with multi-modal Laplace approximations
Wyatt Bridgman
Reese E. Jones
Mohammad Khalil
13
1
0
12 Jul 2023
Quantification of Uncertainty with Adversarial Models
Quantification of Uncertainty with Adversarial Models
Kajetan Schweighofer
L. Aichberger
Mykyta Ielanskyi
G. Klambauer
Sepp Hochreiter
UQCV
21
13
0
06 Jul 2023
Fisher-Weighted Merge of Contrastive Learning Models in Sequential
  Recommendation
Fisher-Weighted Merge of Contrastive Learning Models in Sequential Recommendation
Jung Hyun Ryu
Jaeheyoung Jeon
Jewoong Cho
Myung-joo Kang
MoMe
11
1
0
05 Jul 2023
Beyond Deep Ensembles: A Large-Scale Evaluation of Bayesian Deep
  Learning under Distribution Shift
Beyond Deep Ensembles: A Large-Scale Evaluation of Bayesian Deep Learning under Distribution Shift
Florian Seligmann
P. Becker
Michael Volpp
Gerhard Neumann
UQCV
14
14
0
21 Jun 2023
Deep Gaussian Mixture Ensembles
Deep Gaussian Mixture Ensembles
Yousef El-Laham
Niccolò Dalmasso
Elizabeth Fons
Svitlana Vyetrenko
BDL
UQCV
12
2
0
12 Jun 2023
Riemannian Laplace approximations for Bayesian neural networks
Riemannian Laplace approximations for Bayesian neural networks
Federico Bergamin
Pablo Moreno-Muñoz
Søren Hauberg
Georgios Arvanitidis
BDL
17
6
0
12 Jun 2023
Stochastic Marginal Likelihood Gradients using Neural Tangent Kernels
Stochastic Marginal Likelihood Gradients using Neural Tangent Kernels
Alexander Immer
Tycho F. A. van der Ouderaa
Mark van der Wilk
Gunnar Rätsch
Bernhard Schölkopf
BDL
20
11
0
06 Jun 2023
Towards Anytime Classification in Early-Exit Architectures by Enforcing
  Conditional Monotonicity
Towards Anytime Classification in Early-Exit Architectures by Enforcing Conditional Monotonicity
Metod Jazbec
J. Allingham
Dan Zhang
Eric T. Nalisnick
11
11
0
05 Jun 2023
Quantifying Representation Reliability in Self-Supervised Learning
  Models
Quantifying Representation Reliability in Self-Supervised Learning Models
Young-Jin Park
Hao Wang
Shervin Ardeshir
Navid Azizan
SSL
UQCV
14
3
0
31 May 2023
A Study of Bayesian Neural Network Surrogates for Bayesian Optimization
A Study of Bayesian Neural Network Surrogates for Bayesian Optimization
Y. Li
Tim G. J. Rudner
A. Wilson
BDL
19
27
0
31 May 2023
Low-rank extended Kalman filtering for online learning of neural
  networks from streaming data
Low-rank extended Kalman filtering for online learning of neural networks from streaming data
Peter Chang
Gerardo Duran-Martín
Alexander Y. Shestopaloff
Matt Jones
Kevin P. Murphy
BDL
38
17
0
31 May 2023
USIM-DAL: Uncertainty-aware Statistical Image Modeling-based Dense
  Active Learning for Super-resolution
USIM-DAL: Uncertainty-aware Statistical Image Modeling-based Dense Active Learning for Super-resolution
Vikrant Rangnekar
Uddeshya Upadhyay
Zeynep Akata
Biplab Banerjee
19
4
0
27 May 2023
Improving Neural Additive Models with Bayesian Principles
Improving Neural Additive Models with Bayesian Principles
Kouroche Bouchiat
Alexander Immer
Hugo Yèche
Gunnar Rätsch
Vincent Fortuin
BDL
MedIm
19
6
0
26 May 2023
Uncertainty and Structure in Neural Ordinary Differential Equations
Uncertainty and Structure in Neural Ordinary Differential Equations
Katharina Ott
Michael Tiemann
Philipp Hennig
AI4CE
24
5
0
22 May 2023
Bayesian Numerical Integration with Neural Networks
Bayesian Numerical Integration with Neural Networks
Katharina Ott
Michael Tiemann
Philipp Hennig
F. Briol
BDL
11
3
0
22 May 2023
Uncertainty Quantification in Machine Learning for Engineering Design
  and Health Prognostics: A Tutorial
Uncertainty Quantification in Machine Learning for Engineering Design and Health Prognostics: A Tutorial
V. Nemani
Luca Biggio
Xun Huan
Zhen Hu
Olga Fink
Anh Tran
Yan Wang
Xiaoge Zhang
Chao Hu
AI4CE
18
75
0
07 May 2023
Promises and Pitfalls of the Linearized Laplace in Bayesian Optimization
Promises and Pitfalls of the Linearized Laplace in Bayesian Optimization
Agustinus Kristiadi
Alexander Immer
Runa Eschenhagen
Vincent Fortuin
BDL
UQCV
13
8
0
17 Apr 2023
Towards Efficient MCMC Sampling in Bayesian Neural Networks by
  Exploiting Symmetry
Towards Efficient MCMC Sampling in Bayesian Neural Networks by Exploiting Symmetry
J. G. Wiese
Lisa Wimmer
Theodore Papamarkou
Bernd Bischl
Stephan Günnemann
David Rügamer
14
11
0
06 Apr 2023
Incorporating Unlabelled Data into Bayesian Neural Networks
Incorporating Unlabelled Data into Bayesian Neural Networks
Mrinank Sharma
Tom Rainforth
Yee Whye Teh
Vincent Fortuin
SSL
UQCV
BDL
32
9
0
04 Apr 2023
Laplacian Segmentation Networks: Improved Epistemic Uncertainty from
  Spatial Aleatoric Uncertainty
Laplacian Segmentation Networks: Improved Epistemic Uncertainty from Spatial Aleatoric Uncertainty
Kilian Zepf
Selma Wanna
M. Miani
Juston Moore
J. Frellsen
Søren Hauberg
Aasa Feragen
Frederik Warburg
UQCV
11
4
0
23 Mar 2023
Curvature-Sensitive Predictive Coding with Approximate Laplace Monte
  Carlo
Curvature-Sensitive Predictive Coding with Approximate Laplace Monte Carlo
Umais Zahid
Qinghai Guo
Karl J. Friston
Z. Fountas
16
3
0
09 Mar 2023
Exploration via Epistemic Value Estimation
Exploration via Epistemic Value Estimation
Simon Schmitt
John Shawe-Taylor
Hado van Hasselt
OffRL
11
1
0
07 Mar 2023
Variational Linearized Laplace Approximation for Bayesian Deep Learning
Variational Linearized Laplace Approximation for Bayesian Deep Learning
Luis A. Ortega
Simón Rodríguez Santana
Daniel Hernández-Lobato
BDL
UQCV
28
4
0
24 Feb 2023
Likelihood Annealing: Fast Calibrated Uncertainty for Regression
Likelihood Annealing: Fast Calibrated Uncertainty for Regression
Uddeshya Upadhyay
Jae Myung Kim
Cordelia Schmidt
Bernhard Schölkopf
Zeynep Akata
BDL
UQCV
11
1
0
21 Feb 2023
Guided Deep Kernel Learning
Guided Deep Kernel Learning
Idan Achituve
Gal Chechik
Ethan Fetaya
BDL
31
5
0
19 Feb 2023
The Geometry of Neural Nets' Parameter Spaces Under Reparametrization
The Geometry of Neural Nets' Parameter Spaces Under Reparametrization
Agustinus Kristiadi
Felix Dangel
Philipp Hennig
11
10
0
14 Feb 2023
Fixing Overconfidence in Dynamic Neural Networks
Fixing Overconfidence in Dynamic Neural Networks
Lassi Meronen
Martin Trapp
Andrea Pilzer
Le Yang
Arno Solin
BDL
21
16
0
13 Feb 2023
Fortuna: A Library for Uncertainty Quantification in Deep Learning
Fortuna: A Library for Uncertainty Quantification in Deep Learning
Gianluca Detommaso
Alberto Gasparin
Michele Donini
Matthias Seeger
A. Wilson
Cédric Archambeau
UQCV
BDL
23
14
0
08 Feb 2023
Variational Inference on the Final-Layer Output of Neural Networks
Variational Inference on the Final-Layer Output of Neural Networks
Yadi Wei
R. Khardon
BDL
UQCV
11
0
0
05 Feb 2023
Bayesian Metric Learning for Uncertainty Quantification in Image
  Retrieval
Bayesian Metric Learning for Uncertainty Quantification in Image Retrieval
Frederik Warburg
M. Miani
Silas Brack
Søren Hauberg
UQCV
BDL
11
7
0
02 Feb 2023
Posterior sampling with CNN-based, Plug-and-Play regularization with
  applications to Post-Stack Seismic Inversion
Posterior sampling with CNN-based, Plug-and-Play regularization with applications to Post-Stack Seismic Inversion
M. Izzatullah
T. Alkhalifah
J. Romero
M. Corrales
N. Luiken
M. Ravasi
29
2
0
30 Dec 2022
ECG-Based Electrolyte Prediction: Evaluating Regression and
  Probabilistic Methods
ECG-Based Electrolyte Prediction: Evaluating Regression and Probabilistic Methods
Philipp Bachmann
Daniel Gedon
Fredrik K. Gustafsson
Antônio H. Ribeiro
E. Lampa
S. Gustafsson
Johan Sundström
Thomas B. Schon
12
1
0
21 Dec 2022
Calibrating AI Models for Wireless Communications via Conformal
  Prediction
Calibrating AI Models for Wireless Communications via Conformal Prediction
K. Cohen
Sangwoo Park
Osvaldo Simeone
S. Shamai
24
6
0
15 Dec 2022
The Implicit Delta Method
The Implicit Delta Method
Nathan Kallus
James McInerney
12
1
0
11 Nov 2022
Do Bayesian Neural Networks Need To Be Fully Stochastic?
Do Bayesian Neural Networks Need To Be Fully Stochastic?
Mrinank Sharma
Sebastian Farquhar
Eric T. Nalisnick
Tom Rainforth
BDL
16
52
0
11 Nov 2022
Previous
12345
Next