Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2106.14806
Cited By
Laplace Redux -- Effortless Bayesian Deep Learning
28 June 2021
Erik A. Daxberger
Agustinus Kristiadi
Alexander Immer
Runa Eschenhagen
Matthias Bauer
Philipp Hennig
BDL
UQCV
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Laplace Redux -- Effortless Bayesian Deep Learning"
50 / 211 papers shown
Title
Deep equilibrium models as estimators for continuous latent variables
Russell Tsuchida
Cheng Soon Ong
19
8
0
11 Nov 2022
Variational Hierarchical Mixtures for Probabilistic Learning of Inverse Dynamics
Hany Abdulsamad
Peter Nickl
Pascal Klink
Jan Peters
11
0
0
02 Nov 2022
Elastic Weight Consolidation Improves the Robustness of Self-Supervised Learning Methods under Transfer
Andrius Ovsianas
Jason Ramapuram
Dan Busbridge
Eeshan Gunesh Dhekane
Russ Webb
11
4
0
28 Oct 2022
On double-descent in uncertainty quantification in overparametrized models
Lucas Clarté
Bruno Loureiro
Florent Krzakala
Lenka Zdeborová
UQCV
31
12
0
23 Oct 2022
Accelerated Linearized Laplace Approximation for Bayesian Deep Learning
Zhijie Deng
Feng Zhou
Jun Zhu
BDL
42
19
0
23 Oct 2022
Uncertainty estimation for out-of-distribution detection in computational histopathology
Lea Goetz
OOD
19
0
0
18 Oct 2022
Efficient Bayesian Updates for Deep Learning via Laplace Approximations
Denis Huseljic
M. Herde
Lukas Rauch
Paul Hahn
Zhixin Huang
D. Kottke
S. Vogt
Bernhard Sick
BDL
11
0
0
12 Oct 2022
Sampling-based inference for large linear models, with application to linearised Laplace
Javier Antorán
Shreyas Padhy
Riccardo Barbano
Eric T. Nalisnick
David Janz
José Miguel Hernández-Lobato
BDL
19
17
0
10 Oct 2022
Scale-invariant Bayesian Neural Networks with Connectivity Tangent Kernel
Sungyub Kim
Si-hun Park
Kyungsu Kim
Eunho Yang
BDL
16
4
0
30 Sep 2022
How good is your Laplace approximation of the Bayesian posterior? Finite-sample computable error bounds for a variety of useful divergences
Mikolaj Kasprzak
Ryan Giordano
Tamara Broderick
14
4
0
29 Sep 2022
Quantifying Aleatoric and Epistemic Uncertainty in Machine Learning: Are Conditional Entropy and Mutual Information Appropriate Measures?
Lisa Wimmer
Yusuf Sale
Paul Hofman
Bern Bischl
Eyke Hüllermeier
PER
UD
15
63
0
07 Sep 2022
Approximate Bayesian Neural Operators: Uncertainty Quantification for Parametric PDEs
Emilia Magnani
Nicholas Kramer
Runa Eschenhagen
Lorenzo Rosasco
Philipp Hennig
UQCV
BDL
6
9
0
02 Aug 2022
Unifying Approaches in Active Learning and Active Sampling via Fisher Information and Information-Theoretic Quantities
Andreas Kirsch
Y. Gal
FedML
17
21
0
01 Aug 2022
Towards Clear Expectations for Uncertainty Estimation
Victor Bouvier
Simona Maggio
A. Abraham
L. Dreyfus-Schmidt
UQCV
14
1
0
27 Jul 2022
Uncertainty Calibration in Bayesian Neural Networks via Distance-Aware Priors
Gianluca Detommaso
Alberto Gasparin
A. Wilson
Cédric Archambeau
UQCV
BDL
29
3
0
17 Jul 2022
BayesCap: Bayesian Identity Cap for Calibrated Uncertainty in Frozen Neural Networks
Uddeshya Upadhyay
Shyamgopal Karthik
Yanbei Chen
Massimiliano Mancini
Zeynep Akata
UQCV
BDL
8
22
0
14 Jul 2022
How Robust is your Fair Model? Exploring the Robustness of Diverse Fairness Strategies
E. Small
Wei Shao
Zeliang Zhang
Peihan Liu
Jeffrey Chan
Kacper Sokol
Flora D. Salim
34
2
0
11 Jul 2022
Challenges and Pitfalls of Bayesian Unlearning
Ambrish Rawat
James Requeima
W. Bruinsma
Richard E. Turner
BDL
MU
23
5
0
07 Jul 2022
Laplacian Autoencoders for Learning Stochastic Representations
M. Miani
Frederik Warburg
Pablo Moreno-Muñoz
Nicke Skafte Detlefsen
Søren Hauberg
UQCV
BDL
SSL
17
10
0
30 Jun 2022
Robustness to corruption in pre-trained Bayesian neural networks
Xi Wang
Laurence Aitchison
OOD
UQCV
9
4
0
24 Jun 2022
Cold Posteriors through PAC-Bayes
Konstantinos Pitas
Julyan Arbel
18
5
0
22 Jun 2022
Adapting the Linearised Laplace Model Evidence for Modern Deep Learning
Javier Antorán
David Janz
J. Allingham
Erik A. Daxberger
Riccardo Barbano
Eric T. Nalisnick
José Miguel Hernández-Lobato
UQCV
BDL
22
28
0
17 Jun 2022
Uncertainty-aware Evaluation of Time-Series Classification for Online Handwriting Recognition with Domain Shift
Andreas Klass
Sven M. Lorenz
M. Lauer-Schmaltz
David Rügamer
Bernd Bischl
Christopher Mutschler
Felix Ott
29
10
0
17 Jun 2022
Benchmarking Bayesian neural networks and evaluation metrics for regression tasks
B. Staber
Sébastien Da Veiga
UQCV
BDL
21
3
0
08 Jun 2022
Functional Ensemble Distillation
Coby Penso
Idan Achituve
Ethan Fetaya
FedML
12
2
0
05 Jun 2022
Understanding Deep Learning via Decision Boundary
Shiye Lei
Fengxiang He
Yancheng Yuan
Dacheng Tao
17
13
0
03 Jun 2022
Laplace HypoPINN: Physics-Informed Neural Network for hypocenter localization and its predictive uncertainty
M. Izzatullah
I. Yildirim
U. Waheed
T. Alkhalifah
20
15
0
28 May 2022
Failure Detection in Medical Image Classification: A Reality Check and Benchmarking Testbed
Mélanie Bernhardt
Fabio De Sousa Ribeiro
Ben Glocker
15
9
0
27 May 2022
Posterior Refinement Improves Sample Efficiency in Bayesian Neural Networks
Agustinus Kristiadi
Runa Eschenhagen
Philipp Hennig
BDL
19
12
0
20 May 2022
A Simple Approach to Improve Single-Model Deep Uncertainty via Distance-Awareness
J. Liu
Shreyas Padhy
Jie Jessie Ren
Zi Lin
Yeming Wen
Ghassen Jerfel
Zachary Nado
Jasper Snoek
Dustin Tran
Balaji Lakshminarayanan
UQCV
BDL
16
47
0
01 May 2022
NeuralEF: Deconstructing Kernels by Deep Neural Networks
Zhijie Deng
Jiaxin Shi
Jun Zhu
8
18
0
30 Apr 2022
How Sampling Impacts the Robustness of Stochastic Neural Networks
Sina Daubener
Asja Fischer
SILM
AAML
15
1
0
22 Apr 2022
On Uncertainty, Tempering, and Data Augmentation in Bayesian Classification
Sanyam Kapoor
Wesley J. Maddox
Pavel Izmailov
A. Wilson
BDL
UD
13
48
0
30 Mar 2022
A Framework and Benchmark for Deep Batch Active Learning for Regression
David Holzmüller
Viktor Zaverkin
Johannes Kastner
Ingo Steinwart
UQCV
BDL
GP
15
34
0
17 Mar 2022
Discovering Inductive Bias with Gibbs Priors: A Diagnostic Tool for Approximate Bayesian Inference
Luca Rendsburg
Agustinus Kristiadi
Philipp Hennig
U. V. Luxburg
11
2
0
07 Mar 2022
Uncertainty Estimation for Computed Tomography with a Linearised Deep Image Prior
Javier Antorán
Riccardo Barbano
Johannes Leuschner
José Miguel Hernández-Lobato
Bangti Jin
UQCV
22
10
0
28 Feb 2022
Bayesian Model Selection, the Marginal Likelihood, and Generalization
Sanae Lotfi
Pavel Izmailov
Gregory W. Benton
Micah Goldblum
A. Wilson
UQCV
BDL
45
55
0
23 Feb 2022
Invariance Learning in Deep Neural Networks with Differentiable Laplace Approximations
Alexander Immer
Tycho F. A. van der Ouderaa
Gunnar Rätsch
Vincent Fortuin
Mark van der Wilk
BDL
15
44
0
22 Feb 2022
Augmenting Neural Networks with Priors on Function Values
Hunter Nisonoff
Yixin Wang
Jennifer Listgarten
13
3
0
10 Feb 2022
Theoretical characterization of uncertainty in high-dimensional linear classification
Lucas Clarté
Bruno Loureiro
Florent Krzakala
Lenka Zdeborová
14
20
0
07 Feb 2022
Multimodal Maximum Entropy Dynamic Games
Oswin So
Kyle Stachowicz
Evangelos A. Theodorou
21
7
0
30 Jan 2022
Gradient Descent on Neurons and its Link to Approximate Second-Order Optimization
Frederik Benzing
ODL
35
23
0
28 Jan 2022
Analytic Mutual Information in Bayesian Neural Networks
J. Woo
UQCV
14
6
0
24 Jan 2022
Efficient Online Bayesian Inference for Neural Bandits
Gerardo Duran-Martín
Aleyna Kara
Kevin Patrick Murphy
BDL
19
13
0
01 Dec 2021
Merging Models with Fisher-Weighted Averaging
Michael Matena
Colin Raffel
FedML
MoMe
24
347
0
18 Nov 2021
Mixtures of Laplace Approximations for Improved Post-Hoc Uncertainty in Deep Learning
Runa Eschenhagen
Erik A. Daxberger
Philipp Hennig
Agustinus Kristiadi
UQCV
BDL
17
22
0
05 Nov 2021
Nys-Newton: Nyström-Approximated Curvature for Stochastic Optimization
Dinesh Singh
Hardik Tankaria
M. Yamada
ODL
15
2
0
16 Oct 2021
Prior and Posterior Networks: A Survey on Evidential Deep Learning Methods For Uncertainty Estimation
Dennis Ulmer
Christian Hardmeier
J. Frellsen
BDL
UQCV
UD
EDL
PER
29
47
0
06 Oct 2021
Bayesian Active Meta-Learning for Few Pilot Demodulation and Equalization
K. Cohen
Sangwoo Park
Osvaldo Simeone
S. Shamai
8
12
0
02 Aug 2021
ViViT: Curvature access through the generalized Gauss-Newton's low-rank structure
Felix Dangel
Lukas Tatzel
Philipp Hennig
16
12
0
04 Jun 2021
Previous
1
2
3
4
5
Next