ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.09250
  4. Cited By
Symmetry-Based Representations for Artificial and Biological General
  Intelligence

Symmetry-Based Representations for Artificial and Biological General Intelligence

17 March 2022
I. Higgins
S. Racanière
Danilo Jimenez Rezende
    AI4CE
ArXivPDFHTML

Papers citing "Symmetry-Based Representations for Artificial and Biological General Intelligence"

27 / 27 papers shown
Title
Morphologically Symmetric Reinforcement Learning for Ambidextrous Bimanual Manipulation
Morphologically Symmetric Reinforcement Learning for Ambidextrous Bimanual Manipulation
Zechu Li
Yufeng Jin
Daniel Felipe Ordoñez Apraez
Claudio Semini
Puze Liu
Georgia Chalvatzaki
43
0
0
08 May 2025
The Space Between: On Folding, Symmetries and Sampling
Michal Lewandowski
Bernhard Heinzl
Raphael Pisoni
Bernhard A.Moser
55
0
0
11 Mar 2025
$α$-TCVAE: On the relationship between Disentanglement and
  Diversity
ααα-TCVAE: On the relationship between Disentanglement and Diversity
Cristian Meo
Louis Mahon
Anirudh Goyal
Justin Dauwels
DRL
47
8
0
01 Nov 2024
The Role of Fibration Symmetries in Geometric Deep Learning
The Role of Fibration Symmetries in Geometric Deep Learning
Osvaldo Velarde
Lucas Parra
Paolo Boldi
Hernan Makse
FedML
AI4CE
37
2
0
28 Aug 2024
Morphological Symmetries in Robotics
Morphological Symmetries in Robotics
Daniel Felipe Ordoñez Apraez
Giulio Turrisi
Vladimir Kostic
Mario Martin
Antonio Agudo
Francesc Moreno-Noguer
Massimiliano Pontil
Claudio Semini
Carlos Mastalli
AI4CE
29
5
0
23 Feb 2024
Infinite dSprites for Disentangled Continual Learning: Separating Memory
  Edits from Generalization
Infinite dSprites for Disentangled Continual Learning: Separating Memory Edits from Generalization
Sebastian Dziadzio
cCaugatay Yildiz
Gido M. van de Ven
Tomasz Trzciñski
Tinne Tuytelaars
Matthias Bethge
19
1
0
27 Dec 2023
Topological Obstructions and How to Avoid Them
Topological Obstructions and How to Avoid Them
Babak Esmaeili
Robin G. Walters
Heiko Zimmermann
Jan Willem van de Meent
AI4CE
11
2
0
12 Dec 2023
Dynamics Harmonic Analysis of Robotic Systems: Application in
  Data-Driven Koopman Modelling
Dynamics Harmonic Analysis of Robotic Systems: Application in Data-Driven Koopman Modelling
Daniel Felipe Ordoñez Apraez
Vladimir Kostic
Giulio Turrisi
P. Novelli
Carlos Mastalli
Claudio Semini
Massimiliano Pontil
19
2
0
12 Dec 2023
Representation Learning in a Decomposed Encoder Design for Bio-inspired Hebbian Learning
Representation Learning in a Decomposed Encoder Design for Bio-inspired Hebbian Learning
Achref Jaziri
Sina Ditzel
Iuliia Pliushch
Visvanathan Ramesh
SSL
23
1
0
22 Nov 2023
Towards Information Theory-Based Discovery of Equivariances
Towards Information Theory-Based Discovery of Equivariances
Hippolyte Charvin
Nicola Catenacci Volpi
Daniel Polani
6
0
0
25 Oct 2023
Algebras of actions in an agent's representations of the world
Algebras of actions in an agent's representations of the world
Alexander Dean
Eduardo Alonso
Esther Mondragón
17
0
0
02 Oct 2023
From Bricks to Bridges: Product of Invariances to Enhance Latent Space
  Communication
From Bricks to Bridges: Product of Invariances to Enhance Latent Space Communication
Irene Cannistraci
Luca Moschella
Marco Fumero
Valentino Maiorca
Emanuele Rodolà
41
12
0
02 Oct 2023
A Causal Ordering Prior for Unsupervised Representation Learning
A Causal Ordering Prior for Unsupervised Representation Learning
Avinash Kori
Pedro Sanchez
Konstantinos Vilouras
Ben Glocker
Sotirios A. Tsaftaris
BDL
SSL
CML
10
0
0
11 Jul 2023
Symmetry and Complexity in Object-Centric Deep Active Inference Models
Symmetry and Complexity in Object-Centric Deep Active Inference Models
Stefano Ferraro
Toon Van de Maele
Tim Verbelen
Bart Dhoedt
17
6
0
14 Apr 2023
Equivariant Representation Learning in the Presence of Stabilizers
Equivariant Representation Learning in the Presence of Stabilizers
Luis Armando
∗. GiovanniLucaMarchetti
Danica Kragic
D. Jarnikov
Mike Holenderski
19
0
0
12 Jan 2023
Unsupervised Learning of Equivariant Structure from Sequences
Unsupervised Learning of Equivariant Structure from Sequences
Takeru Miyato
Masanori Koyama
Kenji Fukumizu
13
12
0
12 Oct 2022
Symmetry Defense Against CNN Adversarial Perturbation Attacks
Symmetry Defense Against CNN Adversarial Perturbation Attacks
Blerta Lindqvist
AAML
14
2
0
08 Oct 2022
Bispectral Neural Networks
Bispectral Neural Networks
Sophia Sanborn
Christian Shewmake
Bruno A. Olshausen
Christopher Hillar
17
12
0
07 Sep 2022
Equivariant Representation Learning via Class-Pose Decomposition
Equivariant Representation Learning via Class-Pose Decomposition
G. Marchetti
Gustaf Tegnér
Anastasiia Varava
Danica Kragic
DRL
11
13
0
07 Jul 2022
Spatio-temporally separable non-linear latent factor learning: an
  application to somatomotor cortex fMRI data
Spatio-temporally separable non-linear latent factor learning: an application to somatomotor cortex fMRI data
Eloy P. T. Geenjaar
A. Kashyap
N. Lewis
Robyn L. Miller
Vince D. Calhoun
12
1
0
26 May 2022
Learn one size to infer all: Exploiting translational symmetries in
  delay-dynamical and spatio-temporal systems using scalable neural networks
Learn one size to infer all: Exploiting translational symmetries in delay-dynamical and spatio-temporal systems using scalable neural networks
Mirko Goldmann
C. Mirasso
Ingo Fischer
Miguel C. Soriano
AI4CE
14
7
0
05 Nov 2021
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
M. Bronstein
Joan Bruna
Taco S. Cohen
Petar Velivcković
GNN
163
1,095
0
27 Apr 2021
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate
  Interatomic Potentials
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials
Simon L. Batzner
Albert Musaelian
Lixin Sun
Mario Geiger
J. Mailoa
M. Kornbluth
N. Molinari
Tess E. Smidt
Boris Kozinsky
183
1,218
0
08 Jan 2021
Convex Potential Flows: Universal Probability Distributions with Optimal
  Transport and Convex Optimization
Convex Potential Flows: Universal Probability Distributions with Optimal Transport and Convex Optimization
Chin-Wei Huang
Ricky T. Q. Chen
Christos Tsirigotis
Aaron Courville
OT
101
95
0
10 Dec 2020
Weakly-Supervised Disentanglement Without Compromises
Weakly-Supervised Disentanglement Without Compromises
Francesco Locatello
Ben Poole
Gunnar Rätsch
Bernhard Schölkopf
Olivier Bachem
Michael Tschannen
CoGe
OOD
DRL
165
311
0
07 Feb 2020
Building machines that adapt and compute like brains
Building machines that adapt and compute like brains
Brenden Lake
J. Tenenbaum
AI4CE
FedML
NAI
AILaw
243
893
0
11 Nov 2017
PointNet: Deep Learning on Point Sets for 3D Classification and
  Segmentation
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
C. Qi
Hao Su
Kaichun Mo
Leonidas J. Guibas
3DH
3DPC
3DV
PINN
210
13,886
0
02 Dec 2016
1