Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2203.09250
Cited By
Symmetry-Based Representations for Artificial and Biological General Intelligence
17 March 2022
I. Higgins
S. Racanière
Danilo Jimenez Rezende
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Symmetry-Based Representations for Artificial and Biological General Intelligence"
27 / 27 papers shown
Title
Morphologically Symmetric Reinforcement Learning for Ambidextrous Bimanual Manipulation
Zechu Li
Yufeng Jin
Daniel Felipe Ordoñez Apraez
Claudio Semini
Puze Liu
Georgia Chalvatzaki
47
0
0
08 May 2025
The Space Between: On Folding, Symmetries and Sampling
Michal Lewandowski
Bernhard Heinzl
Raphael Pisoni
Bernhard A.Moser
55
0
0
11 Mar 2025
α
α
α
-TCVAE: On the relationship between Disentanglement and Diversity
Cristian Meo
Louis Mahon
Anirudh Goyal
Justin Dauwels
DRL
49
8
0
01 Nov 2024
The Role of Fibration Symmetries in Geometric Deep Learning
Osvaldo Velarde
Lucas Parra
Paolo Boldi
Hernan Makse
FedML
AI4CE
37
2
0
28 Aug 2024
Morphological Symmetries in Robotics
Daniel Felipe Ordoñez Apraez
Giulio Turrisi
Vladimir Kostic
Mario Martin
Antonio Agudo
Francesc Moreno-Noguer
Massimiliano Pontil
Claudio Semini
Carlos Mastalli
AI4CE
31
5
0
23 Feb 2024
Infinite dSprites for Disentangled Continual Learning: Separating Memory Edits from Generalization
Sebastian Dziadzio
cCaugatay Yildiz
Gido M. van de Ven
Tomasz Trzciñski
Tinne Tuytelaars
Matthias Bethge
19
1
0
27 Dec 2023
Topological Obstructions and How to Avoid Them
Babak Esmaeili
Robin G. Walters
Heiko Zimmermann
Jan Willem van de Meent
AI4CE
13
2
0
12 Dec 2023
Dynamics Harmonic Analysis of Robotic Systems: Application in Data-Driven Koopman Modelling
Daniel Felipe Ordoñez Apraez
Vladimir Kostic
Giulio Turrisi
P. Novelli
Carlos Mastalli
Claudio Semini
Massimiliano Pontil
19
2
0
12 Dec 2023
Representation Learning in a Decomposed Encoder Design for Bio-inspired Hebbian Learning
Achref Jaziri
Sina Ditzel
Iuliia Pliushch
Visvanathan Ramesh
SSL
25
1
0
22 Nov 2023
Towards Information Theory-Based Discovery of Equivariances
Hippolyte Charvin
Nicola Catenacci Volpi
Daniel Polani
8
0
0
25 Oct 2023
Algebras of actions in an agent's representations of the world
Alexander Dean
Eduardo Alonso
Esther Mondragón
20
0
0
02 Oct 2023
From Bricks to Bridges: Product of Invariances to Enhance Latent Space Communication
Irene Cannistraci
Luca Moschella
Marco Fumero
Valentino Maiorca
Emanuele Rodolà
41
12
0
02 Oct 2023
A Causal Ordering Prior for Unsupervised Representation Learning
Avinash Kori
Pedro Sanchez
Konstantinos Vilouras
Ben Glocker
Sotirios A. Tsaftaris
BDL
SSL
CML
12
0
0
11 Jul 2023
Symmetry and Complexity in Object-Centric Deep Active Inference Models
Stefano Ferraro
Toon Van de Maele
Tim Verbelen
Bart Dhoedt
19
6
0
14 Apr 2023
Equivariant Representation Learning in the Presence of Stabilizers
Luis Armando
∗. GiovanniLucaMarchetti
Danica Kragic
D. Jarnikov
Mike Holenderski
19
0
0
12 Jan 2023
Unsupervised Learning of Equivariant Structure from Sequences
Takeru Miyato
Masanori Koyama
Kenji Fukumizu
13
12
0
12 Oct 2022
Symmetry Defense Against CNN Adversarial Perturbation Attacks
Blerta Lindqvist
AAML
17
2
0
08 Oct 2022
Bispectral Neural Networks
Sophia Sanborn
Christian Shewmake
Bruno A. Olshausen
Christopher Hillar
17
12
0
07 Sep 2022
Equivariant Representation Learning via Class-Pose Decomposition
G. Marchetti
Gustaf Tegnér
Anastasiia Varava
Danica Kragic
DRL
11
13
0
07 Jul 2022
Spatio-temporally separable non-linear latent factor learning: an application to somatomotor cortex fMRI data
Eloy P. T. Geenjaar
A. Kashyap
N. Lewis
Robyn L. Miller
Vince D. Calhoun
12
1
0
26 May 2022
Learn one size to infer all: Exploiting translational symmetries in delay-dynamical and spatio-temporal systems using scalable neural networks
Mirko Goldmann
C. Mirasso
Ingo Fischer
Miguel C. Soriano
AI4CE
16
7
0
05 Nov 2021
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
M. Bronstein
Joan Bruna
Taco S. Cohen
Petar Velivcković
GNN
163
1,095
0
27 Apr 2021
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials
Simon L. Batzner
Albert Musaelian
Lixin Sun
Mario Geiger
J. Mailoa
M. Kornbluth
N. Molinari
Tess E. Smidt
Boris Kozinsky
188
1,218
0
08 Jan 2021
Convex Potential Flows: Universal Probability Distributions with Optimal Transport and Convex Optimization
Chin-Wei Huang
Ricky T. Q. Chen
Christos Tsirigotis
Aaron Courville
OT
104
95
0
10 Dec 2020
Weakly-Supervised Disentanglement Without Compromises
Francesco Locatello
Ben Poole
Gunnar Rätsch
Bernhard Schölkopf
Olivier Bachem
Michael Tschannen
CoGe
OOD
DRL
171
311
0
07 Feb 2020
Building machines that adapt and compute like brains
Brenden Lake
J. Tenenbaum
AI4CE
FedML
NAI
AILaw
243
893
0
11 Nov 2017
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
C. Qi
Hao Su
Kaichun Mo
Leonidas J. Guibas
3DH
3DPC
3DV
PINN
210
13,886
0
02 Dec 2016
1