ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.05129
  4. Cited By
Multi-Object Navigation with dynamically learned neural implicit
  representations

Multi-Object Navigation with dynamically learned neural implicit representations

11 October 2022
Pierre Marza
L. Matignon
Olivier Simonin
Christian Wolf
ArXivPDFHTML

Papers citing "Multi-Object Navigation with dynamically learned neural implicit representations"

22 / 22 papers shown
Title
Dexterous Manipulation through Imitation Learning: A Survey
Dexterous Manipulation through Imitation Learning: A Survey
Shan An
Ziyu Meng
Chao Tang
Y. Zhou
Tengyu Liu
...
Yao Mu
Ran Song
Wei Zhang
Zeng-Guang Hou
H. Zhang
40
0
0
04 Apr 2025
Reasoning in visual navigation of end-to-end trained agents: a dynamical systems approach
Reasoning in visual navigation of end-to-end trained agents: a dynamical systems approach
Steeven Janny
Hervé Poirier
L. Antsfeld
G. Bono
G. Monaci
Boris Chidlovskii
Francesco Giuliari
Alessio Del Bue
Christian Wolf
LM&Ro
48
0
0
11 Mar 2025
Neural Radiance Fields for the Real World: A Survey
Neural Radiance Fields for the Real World: A Survey
Wenhui Xiao
Remi Chierchia
Rodrigo Santa Cruz
Xuesong Li
David Ahmedt-Aristizabal
Olivier Salvado
Clinton Fookes
Léo Lebrat
AI4CE
65
0
0
22 Jan 2025
Enhancing Exploratory Capability of Visual Navigation Using Uncertainty
  of Implicit Scene Representation
Enhancing Exploratory Capability of Visual Navigation Using Uncertainty of Implicit Scene Representation
Y. Wang
Qiming Liu
Zhe Liu
Hesheng Wang
18
1
0
05 Nov 2024
MO-DDN: A Coarse-to-Fine Attribute-based Exploration Agent for
  Multi-object Demand-driven Navigation
MO-DDN: A Coarse-to-Fine Attribute-based Exploration Agent for Multi-object Demand-driven Navigation
Hongcheng Wang
Peiqi Liu
Wenzhe Cai
Mingdong Wu
Zhengyu Qian
Hao Dong
18
0
0
04 Oct 2024
One Map to Find Them All: Real-time Open-Vocabulary Mapping for Zero-shot Multi-Object Navigation
One Map to Find Them All: Real-time Open-Vocabulary Mapping for Zero-shot Multi-Object Navigation
F. L. Busch
Timon Homberger
Jesús Ortega-Peimbert
Quantao Yang
Olov Andersson
23
1
0
18 Sep 2024
CAMON: Cooperative Agents for Multi-Object Navigation with LLM-based
  Conversations
CAMON: Cooperative Agents for Multi-Object Navigation with LLM-based Conversations
Pengying Wu
Yao Mu
Kangjie Zhou
Ji Ma
Junting Chen
Chang Liu
LLMAG
LM&Ro
29
2
0
30 Jun 2024
Benchmarking Neural Radiance Fields for Autonomous Robots: An Overview
Benchmarking Neural Radiance Fields for Autonomous Robots: An Overview
Yuhang Ming
Xingrui Yang
Weihan Wang
Zheng Chen
Jinglun Feng
Yifan Xing
Guofeng Zhang
27
8
0
09 May 2024
NeRF in Robotics: A Survey
NeRF in Robotics: A Survey
Guangming Wang
Lei Pan
Songyou Peng
Shaohui Liu
Chenfeng Xu
Yanzi Miao
Wei Zhan
Masayoshi Tomizuka
Marc Pollefeys
Hesheng Wang
27
11
0
02 May 2024
GaussNav: Gaussian Splatting for Visual Navigation
GaussNav: Gaussian Splatting for Visual Navigation
Xiaohan Lei
Min Wang
Wen-gang Zhou
Houqiang Li
3DGS
20
11
0
18 Mar 2024
Learning Generalizable Feature Fields for Mobile Manipulation
Learning Generalizable Feature Fields for Mobile Manipulation
Ri-Zhao Qiu
Yafei Hu
Ge Yang
Yuchen Song
Yang Fu
...
Jiteng Mu
Ruihan Yang
Nikolay A. Atanasov
Sebastian Scherer
Xiaolong Wang
23
25
0
12 Mar 2024
CARFF: Conditional Auto-encoded Radiance Field for 3D Scene Forecasting
CARFF: Conditional Auto-encoded Radiance Field for 3D Scene Forecasting
Jiezhi Yang
Khushi Desai
Charles Packer
Harshil Bhatia
Nicholas Rhinehart
R. McAllister
Joseph E. Gonzalez
AI4CE
16
2
0
31 Jan 2024
Learning to navigate efficiently and precisely in real environments
Learning to navigate efficiently and precisely in real environments
G. Bono
Hervé Poirier
L. Antsfeld
G. Monaci
Boris Chidlovskii
Christian Wolf
16
2
0
25 Jan 2024
End-to-End (Instance)-Image Goal Navigation through Correspondence as an
  Emergent Phenomenon
End-to-End (Instance)-Image Goal Navigation through Correspondence as an Emergent Phenomenon
G. Bono
L. Antsfeld
Boris Chidlovskii
Zhi Zheng
Christian Wolf
3DV
19
9
0
28 Sep 2023
SayNav: Grounding Large Language Models for Dynamic Planning to
  Navigation in New Environments
SayNav: Grounding Large Language Models for Dynamic Planning to Navigation in New Environments
Abhinav Rajvanshi
Karan Sikka
Xiao Lin
Bhoram Lee
Han-Pang Chiu
Alvaro Velasquez
LM&Ro
LRM
LLMAG
6
50
0
08 Sep 2023
Learning whom to trust in navigation: dynamically switching between
  classical and neural planning
Learning whom to trust in navigation: dynamically switching between classical and neural planning
Sombit Dey
Assem Sadek
G. Monaci
Boris Chidlovskii
Christian Wolf
13
4
0
31 Jul 2023
Learning with a Mole: Transferable latent spatial representations for
  navigation without reconstruction
Learning with a Mole: Transferable latent spatial representations for navigation without reconstruction
G. Bono
L. Antsfeld
Assem Sadek
G. Monaci
Christian Wolf
SSL
25
5
0
06 Jun 2023
AutoNeRF: Training Implicit Scene Representations with Autonomous Agents
AutoNeRF: Training Implicit Scene Representations with Autonomous Agents
Pierre Marza
L. Matignon
Olivier Simonin
Dhruv Batra
Christian Wolf
Devendra Singh Chaplot
OffRL
12
10
0
21 Apr 2023
MOPA: Modular Object Navigation with PointGoal Agents
MOPA: Modular Object Navigation with PointGoal Agents
Sonia Raychaudhuri
Tommaso Campari
Unnat Jain
Manolis Savva
Angel X. Chang
3DPC
11
8
0
07 Apr 2023
Vision-Only Robot Navigation in a Neural Radiance World
Vision-Only Robot Navigation in a Neural Radiance World
M. Adamkiewicz
Timothy Chen
Adam Caccavale
Rachel Gardner
Preston Culbertson
Jeannette Bohg
Mac Schwager
151
227
0
01 Oct 2021
Teaching Agents how to Map: Spatial Reasoning for Multi-Object
  Navigation
Teaching Agents how to Map: Spatial Reasoning for Multi-Object Navigation
Pierre Marza
L. Matignon
Olivier Simonin
Christian Wolf
21
18
0
13 Jul 2021
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
247
9,042
0
06 Jun 2015
1