ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2401.04385
  4. Cited By
Machine unlearning through fine-grained model parameters perturbation
v1v2v3v4 (latest)

Machine unlearning through fine-grained model parameters perturbation

IEEE Transactions on Knowledge and Data Engineering (TKDE), 2024
9 January 2024
Zhiwei Zuo
Zhuo Tang
KenLi Li
Anwitaman Datta
    AAMLMU
ArXiv (abs)PDFHTML

Papers citing "Machine unlearning through fine-grained model parameters perturbation"

43 / 43 papers shown
Title
Game-Theoretic Machine Unlearning: Mitigating Extra Privacy Leakage
Game-Theoretic Machine Unlearning: Mitigating Extra Privacy LeakageIEEE Transactions on Information Forensics and Security (IEEE TIFS), 2024
Hengzhu Liu
Tianqing Zhu
Lefeng Zhang
Ping Xiong
MU
307
0
0
06 Nov 2024
eCIL-MU: Embedding based Class Incremental Learning and Machine
  Unlearning
eCIL-MU: Embedding based Class Incremental Learning and Machine UnlearningIEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2024
Zhiwei Zuo
Zhuo Tang
Bin Wang
KenLi Li
Anwitaman Datta
CLLMU
137
6
0
04 Jan 2024
Blockchain-enabled Data Governance for Privacy-Preserved Sharing of
  Confidential Data
Blockchain-enabled Data Governance for Privacy-Preserved Sharing of Confidential DataPeerJ Computer Science (PeerJ Comput. Sci.), 2023
Jingchi Zhang
Anwitaman Datta
71
8
0
08 Sep 2023
Towards Unbounded Machine Unlearning
Towards Unbounded Machine UnlearningNeural Information Processing Systems (NeurIPS), 2023
M. Kurmanji
Peter Triantafillou
Jamie Hayes
Eleni Triantafillou
MU
290
203
0
20 Feb 2023
Algorithms that Approximate Data Removal: New Results and Limitations
Algorithms that Approximate Data Removal: New Results and LimitationsNeural Information Processing Systems (NeurIPS), 2022
Vinith Suriyakumar
Ashia Wilson
MU
155
41
0
25 Sep 2022
Challenges and Pitfalls of Bayesian Unlearning
Challenges and Pitfalls of Bayesian Unlearning
Ambrish Rawat
James Requeima
W. Bruinsma
Richard Turner
BDLMU
179
6
0
07 Jul 2022
Membership Inference via Backdooring
Membership Inference via BackdooringInternational Joint Conference on Artificial Intelligence (IJCAI), 2022
Hongsheng Hu
Z. Salcic
Gillian Dobbie
Jinjun Chen
Lichao Sun
Xuyun Zhang
MIACV
130
37
0
10 Jun 2022
Unlearning Protected User Attributes in Recommendations with Adversarial
  Training
Unlearning Protected User Attributes in Recommendations with Adversarial TrainingAnnual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR), 2022
Christian Ganhor
D. Penz
Navid Rekabsaz
Oleg Lesota
Markus Schedl
FaMLMU
149
57
0
09 Jun 2022
Can Bad Teaching Induce Forgetting? Unlearning in Deep Networks using an
  Incompetent Teacher
Can Bad Teaching Induce Forgetting? Unlearning in Deep Networks using an Incompetent TeacherAAAI Conference on Artificial Intelligence (AAAI), 2022
Vikram S Chundawat
Ayush K Tarun
Murari Mandal
Mohan S. Kankanhalli
MU
250
206
0
17 May 2022
Continual Learning and Private Unlearning
Continual Learning and Private Unlearning
B. Liu
Qian Liu
Peter Stone
CLLMU
198
96
0
24 Mar 2022
The Right to be Forgotten in Federated Learning: An Efficient
  Realization with Rapid Retraining
The Right to be Forgotten in Federated Learning: An Efficient Realization with Rapid RetrainingIEEE Conference on Computer Communications (INFOCOM), 2022
Yi Liu
Lei Xu
Lizhen Qu
Cong Wang
Bo Li
MU
128
202
0
14 Mar 2022
Federated Unlearning with Knowledge Distillation
Federated Unlearning with Knowledge Distillation
Chen Wu
Sencun Zhu
P. Mitra
MU
148
135
0
24 Jan 2022
Zero-Shot Machine Unlearning
Zero-Shot Machine UnlearningIEEE Transactions on Information Forensics and Security (IEEE TIFS), 2022
Vikram S Chundawat
Ayush K Tarun
Murari Mandal
Mohan S. Kankanhalli
MU
276
167
0
14 Jan 2022
Pyramid Adversarial Training Improves ViT Performance
Pyramid Adversarial Training Improves ViT Performance
Charles Herrmann
Kyle Sargent
Lu Jiang
Ramin Zabih
Huiwen Chang
Ce Liu
Dilip Krishnan
Deqing Sun
ViT
237
63
0
30 Nov 2021
Fast Yet Effective Machine Unlearning
Fast Yet Effective Machine Unlearning
Ayush K Tarun
Vikram S Chundawat
Murari Mandal
Mohan S. Kankanhalli
MU
425
247
0
17 Nov 2021
On the Necessity of Auditable Algorithmic Definitions for Machine
  Unlearning
On the Necessity of Auditable Algorithmic Definitions for Machine UnlearningUSENIX Security Symposium (USENIX Security), 2021
Anvith Thudi
Hengrui Jia
Ilia Shumailov
Nicolas Papernot
MU
251
192
0
22 Oct 2021
Certified Patch Robustness via Smoothed Vision Transformers
Certified Patch Robustness via Smoothed Vision TransformersComputer Vision and Pattern Recognition (CVPR), 2021
Hadi Salman
Saachi Jain
Eric Wong
Aleksander Mkadry
AAML
159
66
0
11 Oct 2021
Hard to Forget: Poisoning Attacks on Certified Machine Unlearning
Hard to Forget: Poisoning Attacks on Certified Machine Unlearning
Neil G. Marchant
Benjamin I. P. Rubinstein
Scott Alfeld
MUAAML
151
88
0
17 Sep 2021
SSSE: Efficiently Erasing Samples from Trained Machine Learning Models
SSSE: Efficiently Erasing Samples from Trained Machine Learning Models
Alexandra Peste
Dan Alistarh
Christoph H. Lampert
MU
99
36
0
08 Jul 2021
Membership Inference Attacks on Machine Learning: A Survey
Membership Inference Attacks on Machine Learning: A SurveyACM Computing Surveys (CSUR), 2021
Hongsheng Hu
Z. Salcic
Lichao Sun
Gillian Dobbie
Philip S. Yu
Xuyun Zhang
MIACV
231
561
0
14 Mar 2021
Distributional Generalization: A New Kind of Generalization
Distributional Generalization: A New Kind of Generalization
Preetum Nakkiran
Yamini Bansal
OOD
224
47
0
17 Sep 2020
Local Differential Privacy and Its Applications: A Comprehensive Survey
Local Differential Privacy and Its Applications: A Comprehensive Survey
Mengmeng Yang
Lingjuan Lyu
Jun Zhao
Tianqing Zhu
Kwok-Yan Lam
195
177
0
09 Aug 2020
Descent-to-Delete: Gradient-Based Methods for Machine Unlearning
Descent-to-Delete: Gradient-Based Methods for Machine Unlearning
Seth Neel
Aaron Roth
Saeed Sharifi-Malvajerdi
MU
367
328
0
06 Jul 2020
DeltaGrad: Rapid retraining of machine learning models
DeltaGrad: Rapid retraining of machine learning models
Yinjun Wu
Guang Cheng
S. Davidson
MU
214
237
0
26 Jun 2020
Influence Functions in Deep Learning Are Fragile
Influence Functions in Deep Learning Are Fragile
S. Basu
Phillip E. Pope
Soheil Feizi
TDI
341
279
0
25 Jun 2020
Learn to Forget: Machine Unlearning via Neuron Masking
Learn to Forget: Machine Unlearning via Neuron MaskingIEEE Transactions on Dependable and Secure Computing (TDSC), 2020
Yang Liu
Zhuo Ma
Ximeng Liu
Jian Liu
Zhongyuan Jiang
Jianfeng Ma
Philip Yu
K. Ren
MU
167
80
0
24 Mar 2020
Machine Unlearning
Machine UnlearningIEEE Symposium on Security and Privacy (IEEE S&P), 2019
Lucas Bourtoule
Varun Chandrasekaran
Christopher A. Choquette-Choo
Hengrui Jia
Adelin Travers
Baiwu Zhang
David Lie
Nicolas Papernot
MU
510
1,135
0
09 Dec 2019
Eternal Sunshine of the Spotless Net: Selective Forgetting in Deep
  Networks
Eternal Sunshine of the Spotless Net: Selective Forgetting in Deep NetworksComputer Vision and Pattern Recognition (CVPR), 2019
Aditya Golatkar
Alessandro Achille
Stefano Soatto
CLLMU
382
654
0
12 Nov 2019
Federated Learning with Differential Privacy: Algorithms and Performance
  Analysis
Federated Learning with Differential Privacy: Algorithms and Performance AnalysisIEEE Transactions on Information Forensics and Security (IEEE TIFS), 2019
Kang Wei
Jun Li
Ming Ding
Chuan Ma
Heng Yang
Farokhi Farhad
Shi Jin
Tony Q.S. Quek
H. Vincent Poor
FedML
427
1,928
0
01 Nov 2019
Scalable Private Learning with PATE
Scalable Private Learning with PATE
Nicolas Papernot
Shuang Song
Ilya Mironov
A. Raghunathan
Kunal Talwar
Ulfar Erlingsson
312
666
0
24 Feb 2018
Variational Autoencoders for Collaborative Filtering
Variational Autoencoders for Collaborative Filtering
Dawen Liang
Rahul G. Krishnan
Matthew D. Hoffman
Tony Jebara
BDL
264
1,370
0
16 Feb 2018
Memory Aware Synapses: Learning what (not) to forget
Memory Aware Synapses: Learning what (not) to forget
Rahaf Aljundi
F. Babiloni
Mohamed Elhoseiny
Marcus Rohrbach
Tinne Tuytelaars
KELMCLL
234
1,821
0
27 Nov 2017
Understanding Black-box Predictions via Influence Functions
Understanding Black-box Predictions via Influence Functions
Pang Wei Koh
Abigail Z. Jacobs
TDI
408
3,244
0
14 Mar 2017
Membership Inference Attacks against Machine Learning Models
Membership Inference Attacks against Machine Learning Models
Reza Shokri
M. Stronati
Congzheng Song
Vitaly Shmatikov
SLRMIALMMIACV
650
4,694
0
18 Oct 2016
Densely Connected Convolutional Networks
Densely Connected Convolutional NetworksComputer Vision and Pattern Recognition (CVPR), 2016
Gao Huang
Zhuang Liu
Laurens van der Maaten
Kilian Q. Weinberger
PINN3DV
1.7K
40,615
0
25 Aug 2016
Towards Evaluating the Robustness of Neural Networks
Towards Evaluating the Robustness of Neural NetworksIEEE Symposium on Security and Privacy (IEEE S&P), 2016
Nicholas Carlini
D. Wagner
OODAAML
697
9,288
0
16 Aug 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
3.5K
214,123
0
10 Dec 2015
The Limitations of Deep Learning in Adversarial Settings
The Limitations of Deep Learning in Adversarial Settings
Nicolas Papernot
Patrick McDaniel
S. Jha
Matt Fredrikson
Z. Berkay Celik
A. Swami
AAML
484
4,146
0
24 Nov 2015
DeepFool: a simple and accurate method to fool deep neural networks
DeepFool: a simple and accurate method to fool deep neural networks
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
P. Frossard
AAML
614
5,212
0
14 Nov 2015
Explaining and Harnessing Adversarial Examples
Explaining and Harnessing Adversarial ExamplesInternational Conference on Learning Representations (ICLR), 2014
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAMLGAN
1.1K
20,778
0
20 Dec 2014
Going Deeper with Convolutions
Going Deeper with ConvolutionsComputer Vision and Pattern Recognition (CVPR), 2014
Christian Szegedy
Wei Liu
Yangqing Jia
P. Sermanet
Scott E. Reed
Dragomir Anguelov
D. Erhan
Vincent Vanhoucke
Andrew Rabinovich
995
45,916
0
17 Sep 2014
Very Deep Convolutional Networks for Large-Scale Image Recognition
Very Deep Convolutional Networks for Large-Scale Image RecognitionInternational Conference on Learning Representations (ICLR), 2014
Karen Simonyan
Andrew Zisserman
FAttMDE
3.3K
107,390
0
04 Sep 2014
Intriguing properties of neural networks
Intriguing properties of neural networksInternational Conference on Learning Representations (ICLR), 2013
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
591
15,874
1
21 Dec 2013
1