ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.19460
  4. Cited By
Benchmarking Uncertainty Disentanglement: Specialized Uncertainties for
  Specialized Tasks

Benchmarking Uncertainty Disentanglement: Specialized Uncertainties for Specialized Tasks

29 February 2024
Bálint Mucsányi
Michael Kirchhof
Seong Joon Oh
    UQCV
    BDL
    OODD
ArXivPDFHTML

Papers citing "Benchmarking Uncertainty Disentanglement: Specialized Uncertainties for Specialized Tasks"

33 / 33 papers shown
Title
URL: A Representation Learning Benchmark for Transferable Uncertainty
  Estimates
URL: A Representation Learning Benchmark for Transferable Uncertainty Estimates
Michael Kirchhof
Bálint Mucsányi
Seong Joon Oh
Enkelejda Kasneci
UQCV
412
13
0
07 Jul 2023
A framework for benchmarking class-out-of-distribution detection and its
  application to ImageNet
A framework for benchmarking class-out-of-distribution detection and its application to ImageNet
Ido Galil
Mohammed Dabbah
Ran El-Yaniv
UQCV
34
29
0
23 Feb 2023
What Can We Learn From The Selective Prediction And Uncertainty
  Estimation Performance Of 523 Imagenet Classifiers
What Can We Learn From The Selective Prediction And Uncertainty Estimation Performance Of 523 Imagenet Classifiers
Ido Galil
Mohammed Dabbah
Ran El-Yaniv
UQCV
38
26
0
23 Feb 2023
Likelihood Annealing: Fast Calibrated Uncertainty for Regression
Likelihood Annealing: Fast Calibrated Uncertainty for Regression
Uddeshya Upadhyay
Jae Myung Kim
Cordelia Schmidt
Bernhard Schölkopf
Zeynep Akata
BDL
UQCV
41
1
0
21 Feb 2023
Probabilistic Contrastive Learning Recovers the Correct Aleatoric
  Uncertainty of Ambiguous Inputs
Probabilistic Contrastive Learning Recovers the Correct Aleatoric Uncertainty of Ambiguous Inputs
Michael Kirchhof
Enkelejda Kasneci
Seong Joon Oh
UQCV
399
22
0
06 Feb 2023
Massively Scaling Heteroscedastic Classifiers
Massively Scaling Heteroscedastic Classifiers
Mark Collier
Rodolphe Jenatton
Basil Mustafa
N. Houlsby
Jesse Berent
E. Kokiopoulou
33
8
0
30 Jan 2023
On Second-Order Scoring Rules for Epistemic Uncertainty Quantification
On Second-Order Scoring Rules for Epistemic Uncertainty Quantification
Viktor Bengs
Eyke Hüllermeier
Willem Waegeman
UQCV
233
26
0
30 Jan 2023
Uncertainty Estimates of Predictions via a General Bias-Variance
  Decomposition
Uncertainty Estimates of Predictions via a General Bias-Variance Decomposition
Sebastian G. Gruber
Florian Buettner
PER
UQCV
UD
221
13
0
21 Oct 2022
Quantifying Aleatoric and Epistemic Uncertainty in Machine Learning: Are
  Conditional Entropy and Mutual Information Appropriate Measures?
Quantifying Aleatoric and Epistemic Uncertainty in Machine Learning: Are Conditional Entropy and Mutual Information Appropriate Measures?
Lisa Wimmer
Yusuf Sale
Paul Hofman
Bern Bischl
Eyke Hüllermeier
PER
UD
51
69
0
07 Sep 2022
Plex: Towards Reliability using Pretrained Large Model Extensions
Plex: Towards Reliability using Pretrained Large Model Extensions
Dustin Tran
J. Liu
Michael W. Dusenberry
Du Phan
Mark Collier
...
D. Sculley
Y. Gal
Zoubin Ghahramani
Jasper Snoek
Balaji Lakshminarayanan
VLM
44
126
0
15 Jul 2022
Eliciting and Learning with Soft Labels from Every Annotator
Eliciting and Learning with Soft Labels from Every Annotator
Katherine M. Collins
Umang Bhatt
Adrian Weller
37
44
0
02 Jul 2022
Ensembling over Classifiers: a Bias-Variance Perspective
Ensembling over Classifiers: a Bias-Variance Perspective
Neha Gupta
Jamie Smith
Ben Adlam
Zelda E. Mariet
FedML
UQCV
FaML
31
6
0
21 Jun 2022
A Deeper Look into Aleatoric and Epistemic Uncertainty Disentanglement
A Deeper Look into Aleatoric and Epistemic Uncertainty Disentanglement
Matias Valdenegro-Toro
Daniel Saromo
UD
PER
BDL
UQCV
22
79
0
20 Apr 2022
Learning with Noisy Labels Revisited: A Study Using Real-World Human
  Annotations
Learning with Noisy Labels Revisited: A Study Using Real-World Human Annotations
Jiaheng Wei
Zhaowei Zhu
Weiran Wang
Tongliang Liu
Gang Niu
Yang Liu
NoLa
58
247
0
22 Oct 2021
Ensemble-based Uncertainty Quantification: Bayesian versus Credal
  Inference
Ensemble-based Uncertainty Quantification: Bayesian versus Credal Inference
M. Shaker
Eyke Hüllermeier
UD
UQCV
PER
BDL
244
17
0
21 Jul 2021
On the Practicality of Deterministic Epistemic Uncertainty
On the Practicality of Deterministic Epistemic Uncertainty
Janis Postels
Mattia Segu
Tao Sun
Luca Sieber
Luc Van Gool
Feng Yu
Federico Tombari
UQCV
45
60
0
01 Jul 2021
Laplace Redux -- Effortless Bayesian Deep Learning
Laplace Redux -- Effortless Bayesian Deep Learning
Erik A. Daxberger
Agustinus Kristiadi
Alexander Immer
Runa Eschenhagen
Matthias Bauer
Philipp Hennig
BDL
UQCV
63
299
0
28 Jun 2021
Uncertainty Baselines: Benchmarks for Uncertainty & Robustness in Deep
  Learning
Uncertainty Baselines: Benchmarks for Uncertainty & Robustness in Deep Learning
Zachary Nado
Neil Band
Mark Collier
Josip Djolonga
Michael W. Dusenberry
...
D. Sculley
Balaji Lakshminarayanan
Jasper Snoek
Y. Gal
Dustin Tran
UQCV
ELM
38
96
0
07 Jun 2021
Deep Deterministic Uncertainty: A Simple Baseline
Deep Deterministic Uncertainty: A Simple Baseline
Jishnu Mukhoti
Andreas Kirsch
Joost R. van Amersfoort
Philip Torr
Y. Gal
UD
UQCV
PER
BDL
42
148
0
23 Feb 2021
Simple and Principled Uncertainty Estimation with Deterministic Deep
  Learning via Distance Awareness
Simple and Principled Uncertainty Estimation with Deterministic Deep Learning via Distance Awareness
Jeremiah Zhe Liu
Zi Lin
Shreyas Padhy
Dustin Tran
Tania Bedrax-Weiss
Balaji Lakshminarayanan
UQCV
BDL
58
441
0
17 Jun 2020
Are we done with ImageNet?
Are we done with ImageNet?
Lucas Beyer
Olivier J. Hénaff
Alexander Kolesnikov
Xiaohua Zhai
Aaron van den Oord
VLM
56
399
0
12 Jun 2020
Human uncertainty makes classification more robust
Human uncertainty makes classification more robust
Joshua C. Peterson
Ruairidh M. Battleday
Thomas Griffiths
Olga Russakovsky
OOD
8
298
0
19 Aug 2019
Can You Trust Your Model's Uncertainty? Evaluating Predictive
  Uncertainty Under Dataset Shift
Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift
Yaniv Ovadia
Emily Fertig
Jie Jessie Ren
Zachary Nado
D. Sculley
Sebastian Nowozin
Joshua V. Dillon
Balaji Lakshminarayanan
Jasper Snoek
UQCV
91
1,667
0
06 Jun 2019
Learning Loss for Active Learning
Learning Loss for Active Learning
Donggeun Yoo
In So Kweon
UQCV
44
655
0
09 May 2019
Benchmarking Neural Network Robustness to Common Corruptions and
  Perturbations
Benchmarking Neural Network Robustness to Common Corruptions and Perturbations
Dan Hendrycks
Thomas G. Dietterich
OOD
VLM
17
3,386
0
28 Mar 2019
A Simple Unified Framework for Detecting Out-of-Distribution Samples and
  Adversarial Attacks
A Simple Unified Framework for Detecting Out-of-Distribution Samples and Adversarial Attacks
Kimin Lee
Kibok Lee
Honglak Lee
Jinwoo Shin
OODD
41
2,018
0
10 Jul 2018
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
348
5,742
0
05 Dec 2016
SGDR: Stochastic Gradient Descent with Warm Restarts
SGDR: Stochastic Gradient Descent with Warm Restarts
I. Loshchilov
Frank Hutter
ODL
145
8,017
0
13 Aug 2016
Wide Residual Networks
Wide Residual Networks
Sergey Zagoruyko
N. Komodakis
142
7,944
0
23 May 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
658
192,387
0
10 Dec 2015
Why M Heads are Better than One: Training a Diverse Ensemble of Deep
  Networks
Why M Heads are Better than One: Training a Diverse Ensemble of Deep Networks
Stefan Lee
Senthil Purushwalkam
Michael Cogswell
David J. Crandall
Dhruv Batra
FedML
UQCV
22
311
0
19 Nov 2015
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
313
9,221
0
06 Jun 2015
Statistical Learning Theory: Models, Concepts, and Results
Statistical Learning Theory: Models, Concepts, and Results
U. V. Luxburg
Bernhard Schölkopf
73
242
0
27 Oct 2008
1