ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1112.5745
  4. Cited By
Bayesian Active Learning for Classification and Preference Learning

Bayesian Active Learning for Classification and Preference Learning

24 December 2011
N. Houlsby
Ferenc Huszár
Zoubin Ghahramani
M. Lengyel
ArXivPDFHTML

Papers citing "Bayesian Active Learning for Classification and Preference Learning"

23 / 23 papers shown
Title
Model Already Knows the Best Noise: Bayesian Active Noise Selection via Attention in Video Diffusion Model
Kwanyoung Kim
Sanghyun Kim
DiffM
VGen
168
0
0
23 May 2025
HeAL3D: Heuristical-enhanced Active Learning for 3D Object Detection
HeAL3D: Heuristical-enhanced Active Learning for 3D Object Detection
Esteban Rivera
Surya Prabhakaran
Markus Lienkamp
VLM
363
0
0
01 May 2025
ProtoGuard-guided PROPEL: Class-Aware Prototype Enhancement and Progressive Labeling for Incremental 3D Point Cloud Segmentation
ProtoGuard-guided PROPEL: Class-Aware Prototype Enhancement and Progressive Labeling for Incremental 3D Point Cloud Segmentation
Haoyang Li
Yuecong Xu
Junjie Chen
Kemi Ding
3DPC
CLL
91
0
0
02 Apr 2025
Towards Uncertainty Unification: A Case Study for Preference Learning
Towards Uncertainty Unification: A Case Study for Preference Learning
Shaoting Peng
Haonan Chen
Katherine Driggs-Campbell
78
1
0
25 Mar 2025
Instance-wise Supervision-level Optimization in Active Learning
Shinnosuke Matsuo
Riku Togashi
Ryoma Bise
Seiichi Uchida
Masahiro Nomura
69
0
0
09 Mar 2025
Exploiting Epistemic Uncertainty in Cold-Start Recommendation Systems
Exploiting Epistemic Uncertainty in Cold-Start Recommendation Systems
Yang Xiang
Li Fan
Chenke Yin
Menglin Kong
Chengtao Ji
OffRL
61
0
0
22 Feb 2025
Uncertainty-Aware Explanations Through Probabilistic Self-Explainable Neural Networks
Uncertainty-Aware Explanations Through Probabilistic Self-Explainable Neural Networks
Jon Vadillo
Roberto Santana
J. A. Lozano
Marta Z. Kwiatkowska
BDL
AAML
110
0
0
17 Feb 2025
Efficient Evaluation of Multi-Task Robot Policies With Active Experiment Selection
Efficient Evaluation of Multi-Task Robot Policies With Active Experiment Selection
Abrar Anwar
Rohan Gupta
Zain Merchant
Sayan Ghosh
Willie Neiswanger
Jesse Thomason
OffRL
93
1
0
14 Feb 2025
Beyond Uncertainty: Risk-Aware Active View Acquisition for Safe Robot Navigation and 3D Scene Understanding with FisherRF
Beyond Uncertainty: Risk-Aware Active View Acquisition for Safe Robot Navigation and 3D Scene Understanding with FisherRF
Guangyi Liu
Wen Jiang
Boshu Lei
Vivek Pandey
Kostas Daniilidis
N. Motee
86
8
0
20 Jan 2025
Learning to Assist Humans without Inferring Rewards
Learning to Assist Humans without Inferring Rewards
Vivek Myers
Evan Ellis
Sergey Levine
Benjamin Eysenbach
Anca Dragan
79
3
0
17 Jan 2025
A Review of Bayesian Uncertainty Quantification in Deep Probabilistic Image Segmentation
A Review of Bayesian Uncertainty Quantification in Deep Probabilistic Image Segmentation
M. Valiuddin
R. V. Sloun
C.G.A. Viviers
Peter H. N. de With
Fons van der Sommen
UQCV
172
1
0
25 Nov 2024
Scale-Aware Recognition in Satellite Images under Resource Constraints
Scale-Aware Recognition in Satellite Images under Resource Constraints
Shreelekha Revankar
Cheng Perng Phoo
Utkarsh Mall
Bharath Hariharan
Kavita Bala
76
0
0
31 Oct 2024
Next Best Sense: Guiding Vision and Touch with FisherRF for 3D Gaussian Splatting
Next Best Sense: Guiding Vision and Touch with FisherRF for 3D Gaussian Splatting
Matthew Strong
Boshu Lei
Aiden Swann
Wen Jiang
Kostas Daniilidis
Monroe Kennedy III
3DGS
61
3
0
07 Oct 2024
Differentially Private Active Learning: Balancing Effective Data Selection and Privacy
Differentially Private Active Learning: Balancing Effective Data Selection and Privacy
Kristian Schwethelm
Johannes Kaiser
Jonas Kuntzer
Mehmet Yigitsoy
Daniel Rueckert
Georgios Kaissis
72
0
0
01 Oct 2024
Active Diffusion Subsampling
Active Diffusion Subsampling
Oisin Nolan
Tristan S. W. Stevens
Wessel L. van Nierop
Ruud J. G. van Sloun
DiffM
MedIm
57
3
0
20 Jun 2024
Online Bandit Learning with Offline Preference Data for Improved RLHF
Online Bandit Learning with Offline Preference Data for Improved RLHF
Akhil Agnihotri
Rahul Jain
Deepak Ramachandran
Zheng Wen
OffRL
104
2
0
13 Jun 2024
SAVA: Scalable Learning-Agnostic Data Valuation
SAVA: Scalable Learning-Agnostic Data Valuation
Samuel Kessler
Tam Le
Vu Nguyen
TDI
114
0
0
03 Jun 2024
Future Aware Safe Active Learning of Time Varying Systems using Gaussian Processes
Future Aware Safe Active Learning of Time Varying Systems using Gaussian Processes
Markus Lange-Hegermann
Christoph Zimmer
AI4TS
84
0
0
17 May 2024
ActiveLLM: Large Language Model-based Active Learning for Textual Few-Shot Scenarios
ActiveLLM: Large Language Model-based Active Learning for Textual Few-Shot Scenarios
Markus Bayer
Justin Lutz
Christian A. Reuter
99
7
0
17 May 2024
Uncertainty for Active Learning on Graphs
Uncertainty for Active Learning on Graphs
Dominik Fuchsgruber
Tom Wollschlager
Bertrand Charpentier
Antonio Oroz
Stephan Günnemann
87
11
0
02 May 2024
On the Challenges and Opportunities in Generative AI
On the Challenges and Opportunities in Generative AI
Laura Manduchi
Kushagra Pandey
Robert Bamler
Ryan Cotterell
Sina Daubener
...
F. Wenzel
Frank Wood
Stephan Mandt
Vincent Fortuin
Vincent Fortuin
139
18
0
28 Feb 2024
Uncertainty quantification in fine-tuned LLMs using LoRA ensembles
Uncertainty quantification in fine-tuned LLMs using LoRA ensembles
Oleksandr Balabanov
Hampus Linander
UQCV
78
16
0
19 Feb 2024
A Framework and Benchmark for Deep Batch Active Learning for Regression
A Framework and Benchmark for Deep Batch Active Learning for Regression
David Holzmüller
Viktor Zaverkin
Johannes Kastner
Ingo Steinwart
UQCV
BDL
GP
61
35
0
17 Mar 2022
1