Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
1407.0202
Cited By
v1
v2
v3 (latest)
SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives
Neural Information Processing Systems (NeurIPS), 2014
1 July 2014
Aaron Defazio
Francis R. Bach
Damien Scieur
ODL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives"
50 / 878 papers shown
Dimension-Free Iteration Complexity of Finite Sum Optimization Problems
Neural Information Processing Systems (NeurIPS), 2016
Yossi Arjevani
Ohad Shamir
149
25
0
30 Jun 2016
A Class of Parallel Doubly Stochastic Algorithms for Large-Scale Learning
Aryan Mokhtari
Alec Koppel
Alejandro Ribeiro
167
15
0
15 Jun 2016
Optimization Methods for Large-Scale Machine Learning
Léon Bottou
Frank E. Curtis
J. Nocedal
821
3,554
0
15 Jun 2016
ASAGA: Asynchronous Parallel SAGA
Rémi Leblond
Fabian Pedregosa
Damien Scieur
AI4TS
255
106
0
15 Jun 2016
Variance-Reduced Proximal Stochastic Gradient Descent for Non-convex Composite optimization
Xiyu Yu
Dacheng Tao
194
5
0
02 Jun 2016
Distributed Asynchronous Dual Free Stochastic Dual Coordinate Ascent
Zhouyuan Huo
Heng-Chiao Huang
316
1
0
29 May 2016
Level Up Your Strategy: Towards a Descriptive Framework for Meaningful Enterprise Gamification
Xinghao Pan
200
63
0
29 May 2016
NESTT: A Nonconvex Primal-Dual Splitting Method for Distributed and Stochastic Optimization
Davood Hajinezhad
Mingyi Hong
T. Zhao
Zhaoran Wang
139
45
0
25 May 2016
Adaptive Newton Method for Empirical Risk Minimization to Statistical Accuracy
Aryan Mokhtari
Alejandro Ribeiro
ODL
185
33
0
24 May 2016
Riemannian stochastic variance reduced gradient on Grassmann manifold
Hiroyuki Kasai
Hiroyuki Sato
Bamdev Mishra
307
22
0
24 May 2016
Riemannian SVRG: Fast Stochastic Optimization on Riemannian Manifolds
Hongyi Zhang
Sashank J. Reddi
S. Sra
250
255
0
23 May 2016
Fast Stochastic Methods for Nonsmooth Nonconvex Optimization
Sashank J. Reddi
S. Sra
Barnabás Póczós
Alex Smola
198
54
0
23 May 2016
Accelerated Randomized Mirror Descent Algorithms For Composite Non-strongly Convex Optimization
L. Hien
Cuong V Nguyen
Huan Xu
Canyi Lu
Jiashi Feng
313
19
0
23 May 2016
DynaNewton - Accelerating Newton's Method for Machine Learning
Hadi Daneshmand
Aurelien Lucchi
Thomas Hofmann
70
3
0
20 May 2016
Stochastic Variance Reduction Methods for Saddle-Point Problems
B. Palaniappan
Francis R. Bach
316
220
0
20 May 2016
A Multi-Batch L-BFGS Method for Machine Learning
A. Berahas
J. Nocedal
Martin Takáč
ODL
270
121
0
19 May 2016
Barzilai-Borwein Step Size for Stochastic Gradient Descent
Conghui Tan
Shiqian Ma
Yuhong Dai
Yuqiu Qian
273
197
0
13 May 2016
On the Iteration Complexity of Oblivious First-Order Optimization Algorithms
Yossi Arjevani
Ohad Shamir
176
34
0
11 May 2016
Nonconvex Sparse Learning via Stochastic Optimization with Progressive Variance Reduction
Xingguo Li
R. Arora
Han Liu
Jarvis Haupt
T. Zhao
290
71
0
09 May 2016
A Tight Bound of Hard Thresholding
Jie Shen
Ping Li
233
101
0
05 May 2016
Stochastic Variance-Reduced ADMM
Shuai Zheng
James T. Kwok
308
62
0
24 Apr 2016
A General Distributed Dual Coordinate Optimization Framework for Regularized Loss Minimization
Shun Zheng
Jialei Wang
Fen Xia
Wenyuan Xu
Tong Zhang
252
22
0
13 Apr 2016
Asynchronous Stochastic Gradient Descent with Variance Reduction for Non-Convex Optimization
Zhouyuan Huo
Heng-Chiao Huang
221
49
0
12 Apr 2016
Trading-off variance and complexity in stochastic gradient descent
Vatsal Shah
Megasthenis Asteris
Anastasios Kyrillidis
Sujay Sanghavi
184
13
0
22 Mar 2016
Doubly Random Parallel Stochastic Methods for Large Scale Learning
Aryan Mokhtari
Alec Koppel
Alejandro Ribeiro
134
15
0
22 Mar 2016
Stochastic Variance Reduction for Nonconvex Optimization
Sashank J. Reddi
Ahmed S. Hefny
S. Sra
Barnabás Póczós
Alex Smola
385
630
0
19 Mar 2016
Fast Incremental Method for Nonconvex Optimization
Sashank J. Reddi
S. Sra
Barnabás Póczós
Alex Smola
185
45
0
19 Mar 2016
Katyusha: The First Direct Acceleration of Stochastic Gradient Methods
Zeyuan Allen-Zhu
ODL
553
607
0
18 Mar 2016
Variance Reduction for Faster Non-Convex Optimization
Zeyuan Allen-Zhu
Elad Hazan
ODL
330
407
0
17 Mar 2016
Optimal Black-Box Reductions Between Optimization Objectives
Zeyuan Allen-Zhu
Elad Hazan
310
96
0
17 Mar 2016
Distributed Inexact Damped Newton Method: Data Partitioning and Load-Balancing
Chenxin Ma
Martin Takáč
198
10
0
16 Mar 2016
On the Influence of Momentum Acceleration on Online Learning
Kun Yuan
Bicheng Ying
Ali H. Sayed
273
60
0
14 Mar 2016
Starting Small -- Learning with Adaptive Sample Sizes
Hadi Daneshmand
Aurelien Lucchi
Thomas Hofmann
178
0
0
09 Mar 2016
Stochastic dual averaging methods using variance reduction techniques for regularized empirical risk minimization problems
Tomoya Murata
Taiji Suzuki
113
3
0
08 Mar 2016
Without-Replacement Sampling for Stochastic Gradient Methods: Convergence Results and Application to Distributed Optimization
Ohad Shamir
192
33
0
02 Mar 2016
Fast Nonsmooth Regularized Risk Minimization with Continuation
Shuai Zheng
Ruiliang Zhang
James T. Kwok
218
1
0
25 Feb 2016
Second-Order Stochastic Optimization for Machine Learning in Linear Time
Naman Agarwal
Brian Bullins
Elad Hazan
ODL
431
103
0
12 Feb 2016
A Simple Practical Accelerated Method for Finite Sums
Aaron Defazio
287
123
0
08 Feb 2016
Importance Sampling for Minibatches
Dominik Csiba
Peter Richtárik
203
128
0
06 Feb 2016
Exploiting the Structure: Stochastic Gradient Methods Using Raw Clusters
Zeyuan Allen-Zhu
Yang Yuan
Karthik Sridharan
215
29
0
05 Feb 2016
Reducing Runtime by Recycling Samples
Jialei Wang
Hai Wang
Nathan Srebro
152
3
0
05 Feb 2016
SDCA without Duality, Regularization, and Individual Convexity
Shai Shalev-Shwartz
175
106
0
04 Feb 2016
Adaptive Algorithms for Online Convex Optimization with Long-term Constraints
Rodolphe Jenatton
Jim C. Huang
Cédric Archambeau
257
167
0
23 Dec 2015
Distributed Optimization with Arbitrary Local Solvers
Chenxin Ma
Jakub Konecný
Martin Jaggi
Virginia Smith
Sai Li
Peter Richtárik
Martin Takáč
378
204
0
13 Dec 2015
RSG: Beating Subgradient Method without Smoothness and Strong Convexity
Tianbao Yang
Qihang Lin
695
90
0
09 Dec 2015
Efficient Distributed SGD with Variance Reduction
Soham De
Tom Goldstein
228
43
0
09 Dec 2015
Variance Reduction for Distributed Stochastic Gradient Descent
Soham De
Gavin Taylor
Tom Goldstein
173
8
0
05 Dec 2015
Stochastic Parallel Block Coordinate Descent for Large-scale Saddle Point Problems
Zhanxing Zhu
Amos J. Storkey
ODL
103
7
0
23 Nov 2015
Speed learning on the fly
Pierre-Yves Massé
Yann Ollivier
158
13
0
08 Nov 2015
Stop Wasting My Gradients: Practical SVRG
Reza Babanezhad
Mohamed Osama Ahmed
Alim Virani
Mark Schmidt
Jakub Konecný
Scott Sallinen
194
139
0
05 Nov 2015
Previous
1
2
3
...
16
17
18
Next