Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1407.0202
Cited By
SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives
1 July 2014
Aaron Defazio
Francis R. Bach
Simon Lacoste-Julien
ODL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives"
50 / 353 papers shown
Title
BALPA: A Balanced Primal-Dual Algorithm for Nonsmooth Optimization with Application to Distributed Optimization
Luyao Guo
Jinde Cao
Xinli Shi
Shaofu Yang
20
0
0
06 Dec 2022
On the effectiveness of partial variance reduction in federated learning with heterogeneous data
Bo Li
Mikkel N. Schmidt
T. S. Alstrøm
Sebastian U. Stich
FedML
37
9
0
05 Dec 2022
Covariance Estimators for the ROOT-SGD Algorithm in Online Learning
Yiling Luo
X. Huo
Y. Mei
8
2
0
02 Dec 2022
Stochastic Steffensen method
Minda Zhao
Zehua Lai
Lek-Heng Lim
ODL
15
3
0
28 Nov 2022
Zeroth-Order Alternating Gradient Descent Ascent Algorithms for a Class of Nonconvex-Nonconcave Minimax Problems
Zi Xu
Ziqi Wang
Junlin Wang
Y. Dai
28
11
0
24 Nov 2022
Impact of Redundancy on Resilience in Distributed Optimization and Learning
Shuo Liu
Nirupam Gupta
Nitin H. Vaidya
39
2
0
16 Nov 2022
An Improved Analysis of (Variance-Reduced) Policy Gradient and Natural Policy Gradient Methods
Yanli Liu
Kaipeng Zhang
Tamer Basar
W. Yin
48
102
0
15 Nov 2022
Adaptive Stochastic Variance Reduction for Non-convex Finite-Sum Minimization
Ali Kavis
Stratis Skoulakis
Kimon Antonakopoulos
L. Dadi
V. Cevher
32
15
0
03 Nov 2022
Coresets for Vertical Federated Learning: Regularized Linear Regression and
K
K
K
-Means Clustering
Lingxiao Huang
Zhize Li
Jialin Sun
Haoyu Zhao
FedML
49
9
0
26 Oct 2022
Block-wise Primal-dual Algorithms for Large-scale Doubly Penalized ANOVA Modeling
Penghui Fu
Z. Tan
21
5
0
20 Oct 2022
Unsupervised visualization of image datasets using contrastive learning
Jan Boehm
Philipp Berens
D. Kobak
SSL
31
15
0
18 Oct 2022
SARAH-based Variance-reduced Algorithm for Stochastic Finite-sum Cocoercive Variational Inequalities
Aleksandr Beznosikov
Alexander Gasnikov
45
2
0
12 Oct 2022
Double Averaging and Gradient Projection: Convergence Guarantees for Decentralized Constrained Optimization
Firooz Shahriari-Mehr
Ashkan Panahi
19
1
0
06 Oct 2022
Smooth Monotone Stochastic Variational Inequalities and Saddle Point Problems: A Survey
Aleksandr Beznosikov
Boris Polyak
Eduard A. Gorbunov
D. Kovalev
Alexander Gasnikov
44
31
0
29 Aug 2022
A Stochastic Variance Reduced Gradient using Barzilai-Borwein Techniques as Second Order Information
Hardik Tankaria
N. Yamashita
23
1
0
23 Aug 2022
SYNTHESIS: A Semi-Asynchronous Path-Integrated Stochastic Gradient Method for Distributed Learning in Computing Clusters
Zhuqing Liu
Xin Zhang
Jia-Wei Liu
38
1
0
17 Aug 2022
Multi-block-Single-probe Variance Reduced Estimator for Coupled Compositional Optimization
Wei Jiang
Gang Li
Yibo Wang
Lijun Zhang
Tianbao Yang
40
16
0
18 Jul 2022
SPIRAL: A superlinearly convergent incremental proximal algorithm for nonconvex finite sum minimization
Pourya Behmandpoor
P. Latafat
Andreas Themelis
Marc Moonen
Panagiotis Patrinos
34
2
0
17 Jul 2022
Tackling Data Heterogeneity: A New Unified Framework for Decentralized SGD with Sample-induced Topology
Yan Huang
Ying Sun
Zehan Zhu
Changzhi Yan
Jinming Xu
FedML
38
15
0
08 Jul 2022
MF-OMO: An Optimization Formulation of Mean-Field Games
Xin Guo
Anran Hu
Junzi Zhang
50
14
0
20 Jun 2022
On the Convergence to a Global Solution of Shuffling-Type Gradient Algorithms
Lam M. Nguyen
Trang H. Tran
34
2
0
13 Jun 2022
Stochastic Variance-Reduced Newton: Accelerating Finite-Sum Minimization with Large Batches
Michal Derezinski
55
6
0
06 Jun 2022
Stochastic Gradient Methods with Preconditioned Updates
Abdurakhmon Sadiev
Aleksandr Beznosikov
Abdulla Jasem Almansoori
Dmitry Kamzolov
R. Tappenden
Martin Takáč
ODL
39
9
0
01 Jun 2022
A principled framework for the design and analysis of token algorithms
Hadrien Hendrikx
FedML
29
13
0
30 May 2022
Confederated Learning: Federated Learning with Decentralized Edge Servers
Bin Wang
Jun Fang
Hongbin Li
Xiaojun Yuan
Qing Ling
FedML
28
23
0
30 May 2022
SADAM: Stochastic Adam, A Stochastic Operator for First-Order Gradient-based Optimizer
Wei Zhang
Yun-Jian Bao
ODL
33
2
0
20 May 2022
On the efficiency of Stochastic Quasi-Newton Methods for Deep Learning
M. Yousefi
Angeles Martinez
ODL
21
1
0
18 May 2022
Federated Random Reshuffling with Compression and Variance Reduction
Grigory Malinovsky
Peter Richtárik
FedML
29
10
0
08 May 2022
Byzantine Fault Tolerance in Distributed Machine Learning : a Survey
Djamila Bouhata
Hamouma Moumen
Moumen Hamouma
Ahcène Bounceur
AI4CE
31
7
0
05 May 2022
An Adaptive Incremental Gradient Method With Support for Non-Euclidean Norms
Binghui Xie
Chen Jin
Kaiwen Zhou
James Cheng
Wei Meng
45
1
0
28 Apr 2022
Neighbor-Based Optimized Logistic Regression Machine Learning Model For Electric Vehicle Occupancy Detection
S. Shaw
Keaton Chia
J. Kleissl
16
1
0
28 Apr 2022
FedCau: A Proactive Stop Policy for Communication and Computation Efficient Federated Learning
Afsaneh Mahmoudi
H. S. Ghadikolaei
José Hélio da Cruz Júnior
Carlo Fischione
30
9
0
16 Apr 2022
An Adaptive Gradient Method with Energy and Momentum
Hailiang Liu
Xuping Tian
ODL
21
9
0
23 Mar 2022
Closing the Generalization Gap of Cross-silo Federated Medical Image Segmentation
An Xu
Wenqi Li
Pengfei Guo
Dong Yang
H. Roth
Ali Hatamizadeh
Can Zhao
Daguang Xu
Heng-Chiao Huang
Ziyue Xu
FedML
38
52
0
18 Mar 2022
Accelerating Plug-and-Play Image Reconstruction via Multi-Stage Sketched Gradients
Junqi Tang
31
2
0
14 Mar 2022
Data-Consistent Local Superresolution for Medical Imaging
Junqi Tang
SupR
33
0
0
22 Feb 2022
MSTGD:A Memory Stochastic sTratified Gradient Descent Method with an Exponential Convergence Rate
Aixiang Chen
Chen
Jinting Zhang
Zanbo Zhang
Zhihong Li
48
0
0
21 Feb 2022
Stochastic Gradient Descent-Ascent: Unified Theory and New Efficient Methods
Aleksandr Beznosikov
Eduard A. Gorbunov
Hugo Berard
Nicolas Loizou
24
49
0
15 Feb 2022
Equivariance Regularization for Image Reconstruction
Junqi Tang
32
2
0
10 Feb 2022
Nesterov Accelerated Shuffling Gradient Method for Convex Optimization
Trang H. Tran
K. Scheinberg
Lam M. Nguyen
40
11
0
07 Feb 2022
Distributed Learning With Sparsified Gradient Differences
Yicheng Chen
Rick S. Blum
Martin Takáč
Brian M. Sadler
39
15
0
05 Feb 2022
Decentralized Stochastic Variance Reduced Extragradient Method
Luo Luo
Haishan Ye
27
7
0
01 Feb 2022
L-SVRG and L-Katyusha with Adaptive Sampling
Boxin Zhao
Boxiang Lyu
Mladen Kolar
26
3
0
31 Jan 2022
A dual approach for federated learning
Zhenan Fan
Huang Fang
M. Friedlander
FedML
18
3
0
26 Jan 2022
Partial Model Averaging in Federated Learning: Performance Guarantees and Benefits
Sunwoo Lee
Anit Kumar Sahu
Chaoyang He
Salman Avestimehr
FedML
33
17
0
11 Jan 2022
Adaptive Client Sampling in Federated Learning via Online Learning with Bandit Feedback
Boxin Zhao
Lingxiao Wang
Mladen Kolar
Ziqi Liu
Qing Cui
Jun Zhou
Chaochao Chen
FedML
44
10
0
28 Dec 2021
Accelerated and instance-optimal policy evaluation with linear function approximation
Tianjiao Li
Guanghui Lan
A. Pananjady
OffRL
44
13
0
24 Dec 2021
A Continuous-time Stochastic Gradient Descent Method for Continuous Data
Kexin Jin
J. Latz
Chenguang Liu
Carola-Bibiane Schönlieb
28
9
0
07 Dec 2021
Training Structured Neural Networks Through Manifold Identification and Variance Reduction
Zih-Syuan Huang
Ching-pei Lee
AAML
53
9
0
05 Dec 2021
DSAG: A mixed synchronous-asynchronous iterative method for straggler-resilient learning
A. Severinson
E. Rosnes
S. E. Rouayheb
Alexandre Graell i Amat
22
2
0
27 Nov 2021
Previous
1
2
3
4
5
6
7
8
Next