Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
1407.0202
Cited By
v1
v2
v3 (latest)
SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives
Neural Information Processing Systems (NeurIPS), 2014
1 July 2014
Aaron Defazio
Francis R. Bach
Damien Scieur
ODL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives"
50 / 878 papers shown
Max-Sliced Mutual Information
Neural Information Processing Systems (NeurIPS), 2023
Dor Tsur
Ziv Goldfeld
Kristjan Greenewald
175
14
0
28 Sep 2023
Joint Sampling and Optimisation for Inverse Rendering
ACM SIGGRAPH Conference and Exhibition on Computer Graphics and Interactive Techniques in Asia (SIGGRAPH Asia), 2023
Martin Balint
K. Myszkowski
Hans-Peter Seidel
Gurprit Singh
122
2
0
27 Sep 2023
Byzantine-Resilient Federated PCA and Low Rank Column-wise Sensing
IEEE Transactions on Information Theory (IEEE Trans. Inf. Theory), 2023
Ankit Pratap Singh
Namrata Vaswani
420
1
0
25 Sep 2023
Oracle Complexity Reduction for Model-free LQR: A Stochastic Variance-Reduced Policy Gradient Approach
American Control Conference (ACC), 2023
Leonardo F. Toso
Han Wang
James Anderson
201
2
0
19 Sep 2023
A Theoretical and Empirical Study on the Convergence of Adam with an "Exact" Constant Step Size in Non-Convex Settings
Alokendu Mazumder
Rishabh Sabharwal
Manan Tayal
Bhartendu Kumar
Punit Rathore
329
0
0
15 Sep 2023
DRAG: Divergence-based Adaptive Aggregation in Federated learning on Non-IID Data
Feng Zhu
Jingjing Zhang
Shengyun Liu
Xin Eric Wang
FedML
212
1
0
04 Sep 2023
Variational Information Pursuit with Large Language and Multimodal Models for Interpretable Predictions
Kwan Ho Ryan Chan
Aditya Chattopadhyay
B. Haeffele
René Vidal
178
0
0
24 Aug 2023
GBM-based Bregman Proximal Algorithms for Constrained Learning
Zhenwei Lin
Qi Deng
174
1
0
21 Aug 2023
Foundation Model-oriented Robustness: Robust Image Model Evaluation with Pretrained Models
International Conference on Learning Representations (ICLR), 2023
Peiyan Zhang
Hao Liu
Chaozhuo Li
Xing Xie
Sunghun Kim
Haohan Wang
VLM
OOD
338
9
0
21 Aug 2023
Relax and penalize: a new bilevel approach to mixed-binary hyperparameter optimization
M. D. Santis
Jordan Frécon
Francesco Rinaldi
Saverio Salzo
Martin Schmidt
Martin Schmidt
264
0
0
21 Aug 2023
Variance reduction techniques for stochastic proximal point algorithms
Journal of Optimization Theory and Applications (JOTA), 2023
Cheik Traoré
Vassilis Apidopoulos
Saverio Salzo
S. Villa
263
10
0
18 Aug 2023
Adaptive SGD with Polyak stepsize and Line-search: Robust Convergence and Variance Reduction
Neural Information Processing Systems (NeurIPS), 2023
Xiao-Yan Jiang
Sebastian U. Stich
240
30
0
11 Aug 2023
Byzantine-Robust Decentralized Stochastic Optimization with Stochastic Gradient Noise-Independent Learning Error
Signal Processing (Signal Process.), 2023
Jie Peng
Weiyu Li
Qing Ling
148
4
0
10 Aug 2023
An Introduction to Bi-level Optimization: Foundations and Applications in Signal Processing and Machine Learning
IEEE Signal Processing Magazine (IEEE Signal Process. Mag.), 2023
Yihua Zhang
Prashant Khanduri
Ioannis C. Tsaknakis
Yuguang Yao
Min-Fong Hong
Sijia Liu
AI4CE
373
48
0
01 Aug 2023
Faster Stochastic Algorithms for Minimax Optimization under Polyak--Łojasiewicz Conditions
Neural Information Processing Systems (NeurIPS), 2023
Le‐Yu Chen
Boyuan Yao
Luo Luo
178
17
0
29 Jul 2023
Promoting Exploration in Memory-Augmented Adam using Critical Momenta
Pranshu Malviya
Gonçalo Mordido
A. Baratin
Reza Babanezhad Harikandeh
Jerry Huang
Damien Scieur
Razvan Pascanu
Sarath Chandar
ODL
238
1
0
18 Jul 2023
Variance-reduced accelerated methods for decentralized stochastic double-regularized nonconvex strongly-concave minimax problems
Gabriel Mancino-Ball
Yangyang Xu
317
9
0
14 Jul 2023
Text Descriptions are Compressive and Invariant Representations for Visual Learning
Zhili Feng
Anna Bair
J. Zico Kolter
VLM
209
7
0
10 Jul 2023
A hybrid machine learning framework for clad characteristics prediction in metal additive manufacturing
S. Tayebati
K. Cho
AI4CE
141
4
0
04 Jul 2023
Ordering for Non-Replacement SGD
Yuetong Xu
Baharan Mirzasoleiman
141
0
0
28 Jun 2023
FFCV: Accelerating Training by Removing Data Bottlenecks
Computer Vision and Pattern Recognition (CVPR), 2023
Guillaume Leclerc
Andrew Ilyas
Logan Engstrom
Sung Min Park
Hadi Salman
Aleksander Madry
199
78
0
21 Jun 2023
MimiC: Combating Client Dropouts in Federated Learning by Mimicking Central Updates
IEEE Transactions on Mobile Computing (IEEE TMC), 2023
Yuchang Sun
Yuyi Mao
Jinchao Zhang
FedML
251
20
0
21 Jun 2023
Optimal Algorithms for Stochastic Bilevel Optimization under Relaxed Smoothness Conditions
Journal of machine learning research (JMLR), 2023
Xuxing Chen
Tesi Xiao
Krishnakumar Balasubramanian
289
32
0
21 Jun 2023
AdaSelection: Accelerating Deep Learning Training through Data Subsampling
Minghe Zhang
Chaosheng Dong
Jinmiao Fu
Tianchen Zhou
Jia Liang
...
Bo Liu
Michinari Momma
Bryan Wang
Yan Gao
Yi Sun
183
3
0
19 Jun 2023
A
2
CiD
2
\textbf{A}^2\textbf{CiD}^2
A
2
CiD
2
: Accelerating Asynchronous Communication in Decentralized Deep Learning
Neural Information Processing Systems (NeurIPS), 2023
Adel Nabli
Eugene Belilovsky
Edouard Oyallon
339
9
0
14 Jun 2023
Understanding How Consistency Works in Federated Learning via Stage-wise Relaxed Initialization
Neural Information Processing Systems (NeurIPS), 2023
Yan Sun
Li Shen
Dacheng Tao
FedML
215
20
0
09 Jun 2023
Communication-Efficient Gradient Descent-Accent Methods for Distributed Variational Inequalities: Unified Analysis and Local Updates
International Conference on Learning Representations (ICLR), 2023
Siqi Zhang
S. Choudhury
Sebastian U. Stich
Nicolas Loizou
FedML
493
9
0
08 Jun 2023
Understanding Generalization of Federated Learning via Stability: Heterogeneity Matters
International Conference on Artificial Intelligence and Statistics (AISTATS), 2023
Zhenyu Sun
Xiaochun Niu
Ermin Wei
FedML
MLT
221
35
0
06 Jun 2023
Federated Multi-Sequence Stochastic Approximation with Local Hypergradient Estimation
Davoud Ataee Tarzanagh
Mingchen Li
Pranay Sharma
Samet Oymak
273
0
0
02 Jun 2023
BiSLS/SPS: Auto-tune Step Sizes for Stable Bi-level Optimization
Neural Information Processing Systems (NeurIPS), 2023
Chen Fan
Gaspard Choné-Ducasse
Mark Schmidt
Christos Thrampoulidis
249
4
0
30 May 2023
Sharpened Lazy Incremental Quasi-Newton Method
International Conference on Artificial Intelligence and Statistics (AISTATS), 2023
Aakash Lahoti
Spandan Senapati
K. Rajawat
Alec Koppel
334
2
0
26 May 2023
Differentiable Clustering with Perturbed Spanning Forests
Neural Information Processing Systems (NeurIPS), 2023
Lawrence Stewart
Francis R. Bach
Felipe Llinares-López
Quentin Berthet
307
11
0
25 May 2023
SignSVRG: fixing SignSGD via variance reduction
Evgenii Chzhen
S. Schechtman
231
5
0
22 May 2023
Stochastic Ratios Tracking Algorithm for Large Scale Machine Learning Problems
Shigeng Sun
Yuchen Xie
129
3
0
17 May 2023
Convergence of Adam Under Relaxed Assumptions
Neural Information Processing Systems (NeurIPS), 2023
Haochuan Li
Alexander Rakhlin
Ali Jadbabaie
393
92
0
27 Apr 2023
Sarah Frank-Wolfe: Methods for Constrained Optimization with Best Rates and Practical Features
International Conference on Machine Learning (ICML), 2023
Aleksandr Beznosikov
David Dobre
Gauthier Gidel
225
7
0
23 Apr 2023
Accelerated Doubly Stochastic Gradient Algorithm for Large-scale Empirical Risk Minimization
Zebang Shen
Hui Qian
Tongzhou Mu
Chao Zhang
ODL
175
0
0
23 Apr 2023
Near-Optimal Decentralized Momentum Method for Nonconvex-PL Minimax Problems
Feihu Huang
Songcan Chen
173
8
0
21 Apr 2023
Debiasing Conditional Stochastic Optimization
Neural Information Processing Systems (NeurIPS), 2023
Lie He
S. Kasiviswanathan
CML
BDL
278
5
0
20 Apr 2023
Estimate-Then-Optimize versus Integrated-Estimation-Optimization versus Sample Average Approximation: A Stochastic Dominance Perspective
Adam N. Elmachtoub
Henry Lam
Haofeng Zhang
Yunfan Zhao
401
10
0
13 Apr 2023
Accelerating Hybrid Federated Learning Convergence under Partial Participation
IEEE Transactions on Signal Processing (IEEE TSP), 2023
Jieming Bian
Lei Wang
Kun Yang
Cong Shen
Jie Xu
FedML
292
22
0
10 Apr 2023
Decentralized gradient descent maximization method for composite nonconvex strongly-concave minimax problems
SIAM Journal on Optimization (SIOPT), 2023
Yangyang Xu
233
10
0
05 Apr 2023
Infeasible Deterministic, Stochastic, and Variance-Reduction Algorithms for Optimization under Orthogonality Constraints
Pierre Ablin
Simon Vary
Bin Gao
P.-A. Absil
180
13
0
29 Mar 2023
Unified analysis of SGD-type methods
Eduard A. Gorbunov
264
3
0
29 Mar 2023
Accelerated Cyclic Coordinate Dual Averaging with Extrapolation for Composite Convex Optimization
International Conference on Machine Learning (ICML), 2023
Cheuk Yin Lin
Chaobing Song
Jelena Diakonikolas
176
6
0
28 Mar 2023
Convergence of variational Monte Carlo simulation and scale-invariant pre-training
Nilin Abrahamsen
Zhiyan Ding
Gil Goldshlager
Lin Lin
DRL
241
3
0
21 Mar 2023
Byzantine-Robust Loopless Stochastic Variance-Reduced Gradient
Nikita Fedin
Eduard A. Gorbunov
172
5
0
08 Mar 2023
Variance-reduced Clipping for Non-convex Optimization
IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2023
Amirhossein Reisizadeh
Haochuan Li
Subhro Das
Ali Jadbabaie
357
34
0
02 Mar 2023
PA&DA: Jointly Sampling PAth and DAta for Consistent NAS
Computer Vision and Pattern Recognition (CVPR), 2023
Shunong Lu
Yu Hu
Longxing Yang
Zihao Sun
Jilin Mei
Jianchao Tan
Chengru Song
184
14
0
28 Feb 2023
Stochastic Gradient Descent under Markovian Sampling Schemes
International Conference on Machine Learning (ICML), 2023
Mathieu Even
287
38
0
28 Feb 2023
Previous
1
2
3
4
5
6
...
16
17
18
Next