Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1407.0202
Cited By
SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives
1 July 2014
Aaron Defazio
Francis R. Bach
Simon Lacoste-Julien
ODL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives"
50 / 353 papers shown
Title
Random-reshuffled SARAH does not need a full gradient computations
Aleksandr Beznosikov
Martin Takáč
31
7
0
26 Nov 2021
Distributed Policy Gradient with Variance Reduction in Multi-Agent Reinforcement Learning
Xiaoxiao Zhao
Jinlong Lei
Li Li
Jie-bin Chen
OffRL
20
2
0
25 Nov 2021
Linear Speedup in Personalized Collaborative Learning
El Mahdi Chayti
Sai Praneeth Karimireddy
Sebastian U. Stich
Nicolas Flammarion
Martin Jaggi
FedML
21
13
0
10 Nov 2021
DVS: Deep Visibility Series and its Application in Construction Cost Index Forecasting
Tianxiang Zhan
Yuanpeng He
Hanwen Li
Fuyuan Xiao
AI4TS
14
0
0
07 Nov 2021
AGGLIO: Global Optimization for Locally Convex Functions
Debojyoti Dey
B. Mukhoty
Purushottam Kar
21
2
0
06 Nov 2021
Federated Expectation Maximization with heterogeneity mitigation and variance reduction
Aymeric Dieuleveut
G. Fort
Eric Moulines
Geneviève Robin
FedML
35
5
0
03 Nov 2021
Federated Semi-Supervised Learning with Class Distribution Mismatch
Zhiguo Wang
Xintong Wang
Ruoyu Sun
Tsung-Hui Chang
FedML
39
12
0
29 Oct 2021
Stochastic Primal-Dual Deep Unrolling
Junqi Tang
Subhadip Mukherjee
Carola-Bibiane Schönlieb
24
4
0
19 Oct 2021
Nys-Newton: Nyström-Approximated Curvature for Stochastic Optimization
Dinesh Singh
Hardik Tankaria
M. Yamada
ODL
47
2
0
16 Oct 2021
Adaptive Elastic Training for Sparse Deep Learning on Heterogeneous Multi-GPU Servers
Yujing Ma
Florin Rusu
Kesheng Wu
A. Sim
48
3
0
13 Oct 2021
G
ˉ
m
s
t
\bar{G}_{mst}
G
ˉ
m
s
t
:An Unbiased Stratified Statistic and a Fast Gradient Optimization Algorithm Based on It
Aixiang Chen
24
0
0
07 Oct 2021
Accelerating Perturbed Stochastic Iterates in Asynchronous Lock-Free Optimization
Kaiwen Zhou
Anthony Man-Cho So
James Cheng
29
1
0
30 Sep 2021
Pushing on Text Readability Assessment: A Transformer Meets Handcrafted Linguistic Features
Bruce W. Lee
Yoonna Jang
J. Lee
VLM
48
75
0
25 Sep 2021
Asynchronous Federated Learning on Heterogeneous Devices: A Survey
Chenhao Xu
Youyang Qu
Yong Xiang
Longxiang Gao
FedML
104
246
0
09 Sep 2021
COCO Denoiser: Using Co-Coercivity for Variance Reduction in Stochastic Convex Optimization
Manuel Madeira
Renato M. P. Negrinho
J. Xavier
P. Aguiar
31
0
0
07 Sep 2021
L-DQN: An Asynchronous Limited-Memory Distributed Quasi-Newton Method
Bugra Can
Saeed Soori
M. Dehnavi
Mert Gurbuzbalaban
50
2
0
20 Aug 2021
Construction Cost Index Forecasting: A Multi-feature Fusion Approach
Tianxiang Zhan
Yuanpeng He
Fuyuan Xiao
45
0
0
18 Aug 2021
FedChain: Chained Algorithms for Near-Optimal Communication Cost in Federated Learning
Charlie Hou
K. K. Thekumparampil
Giulia Fanti
Sewoong Oh
FedML
39
14
0
16 Aug 2021
Decentralized Composite Optimization with Compression
Yao Li
Xiaorui Liu
Jiliang Tang
Ming Yan
Kun Yuan
29
9
0
10 Aug 2021
ErrorCompensatedX: error compensation for variance reduced algorithms
Hanlin Tang
Yao Li
Ji Liu
Ming Yan
32
10
0
04 Aug 2021
Physics-informed Dyna-Style Model-Based Deep Reinforcement Learning for Dynamic Control
Xin-Yang Liu
Jian-Xun Wang
AI4CE
31
38
0
31 Jul 2021
Behavior Mimics Distribution: Combining Individual and Group Behaviors for Federated Learning
Hua Huang
Fanhua Shang
Yuanyuan Liu
Hongying Liu
FedML
29
14
0
23 Jun 2021
Stochastic Polyak Stepsize with a Moving Target
Robert Mansel Gower
Aaron Defazio
Michael G. Rabbat
32
17
0
22 Jun 2021
Decentralized Constrained Optimization: Double Averaging and Gradient Projection
Firooz Shahriari-Mehr
David Bosch
Ashkan Panahi
21
8
0
21 Jun 2021
Secure Distributed Training at Scale
Eduard A. Gorbunov
Alexander Borzunov
Michael Diskin
Max Ryabinin
FedML
26
15
0
21 Jun 2021
Asynchronous Distributed Optimization with Redundancy in Cost Functions
Shuo Liu
Nirupam Gupta
Nitin H. Vaidya
31
3
0
07 Jun 2021
Leveraging Sparse Linear Layers for Debuggable Deep Networks
Eric Wong
Shibani Santurkar
Aleksander Madry
FAtt
22
88
0
11 May 2021
GT-STORM: Taming Sample, Communication, and Memory Complexities in Decentralized Non-Convex Learning
Xin Zhang
Jia Liu
Zhengyuan Zhu
Elizabeth S. Bentley
51
14
0
04 May 2021
Greedy-GQ with Variance Reduction: Finite-time Analysis and Improved Complexity
Shaocong Ma
Ziyi Chen
Yi Zhou
Shaofeng Zou
17
11
0
30 Mar 2021
ANITA: An Optimal Loopless Accelerated Variance-Reduced Gradient Method
Zhize Li
48
14
0
21 Mar 2021
Personalized Federated Learning: A Unified Framework and Universal Optimization Techniques
Filip Hanzely
Boxin Zhao
Mladen Kolar
FedML
37
53
0
19 Feb 2021
SVRG Meets AdaGrad: Painless Variance Reduction
Benjamin Dubois-Taine
Sharan Vaswani
Reza Babanezhad
Mark Schmidt
Simon Lacoste-Julien
23
18
0
18 Feb 2021
Distributed Second Order Methods with Fast Rates and Compressed Communication
Rustem Islamov
Xun Qian
Peter Richtárik
34
51
0
14 Feb 2021
Stochastic Gradient Langevin Dynamics with Variance Reduction
Zhishen Huang
Stephen Becker
17
7
0
12 Feb 2021
DeEPCA: Decentralized Exact PCA with Linear Convergence Rate
Haishan Ye
Tong Zhang
21
25
0
08 Feb 2021
Urban land-use analysis using proximate sensing imagery: a survey
Zhinan Qiao
Xiaohui Yuan
19
18
0
13 Jan 2021
Accelerated, Optimal, and Parallel: Some Results on Model-Based Stochastic Optimization
Karan N. Chadha
Gary Cheng
John C. Duchi
62
16
0
07 Jan 2021
PMGT-VR: A decentralized proximal-gradient algorithmic framework with variance reduction
Haishan Ye
Wei Xiong
Tong Zhang
16
16
0
30 Dec 2020
Optimising cost vs accuracy of decentralised analytics in fog computing environments
Lorenzo Valerio
A. Passarella
M. Conti
35
1
0
09 Dec 2020
Faster Non-Convex Federated Learning via Global and Local Momentum
Rudrajit Das
Anish Acharya
Abolfazl Hashemi
Sujay Sanghavi
Inderjit S. Dhillon
Ufuk Topcu
FedML
40
82
0
07 Dec 2020
A Stochastic Path-Integrated Differential EstimatoR Expectation Maximization Algorithm
G. Fort
Eric Moulines
Hoi-To Wai
TPM
27
7
0
30 Nov 2020
SMG: A Shuffling Gradient-Based Method with Momentum
Trang H. Tran
Lam M. Nguyen
Quoc Tran-Dinh
23
21
0
24 Nov 2020
A Linearly Convergent Algorithm for Decentralized Optimization: Sending Less Bits for Free!
D. Kovalev
Anastasia Koloskova
Martin Jaggi
Peter Richtárik
Sebastian U. Stich
31
73
0
03 Nov 2020
Local SGD: Unified Theory and New Efficient Methods
Eduard A. Gorbunov
Filip Hanzely
Peter Richtárik
FedML
37
109
0
03 Nov 2020
Variance-Reduced Off-Policy TDC Learning: Non-Asymptotic Convergence Analysis
Shaocong Ma
Yi Zhou
Shaofeng Zou
OffRL
22
14
0
26 Oct 2020
AEGD: Adaptive Gradient Descent with Energy
Hailiang Liu
Xuping Tian
ODL
27
11
0
10 Oct 2020
Accelerating Convergence of Replica Exchange Stochastic Gradient MCMC via Variance Reduction
Wei Deng
Qi Feng
G. Karagiannis
Guang Lin
F. Liang
38
9
0
02 Oct 2020
Variance-Reduced Methods for Machine Learning
Robert Mansel Gower
Mark Schmidt
Francis R. Bach
Peter Richtárik
24
112
0
02 Oct 2020
Nonsmoothness in Machine Learning: specific structure, proximal identification, and applications
F. Iutzeler
J. Malick
12
16
0
02 Oct 2020
Effective Proximal Methods for Non-convex Non-smooth Regularized Learning
Guannan Liang
Qianqian Tong
Jiahao Ding
Miao Pan
J. Bi
27
0
0
14 Sep 2020
Previous
1
2
3
4
5
6
7
8
Next