Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
1407.0202
Cited By
v1
v2
v3 (latest)
SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives
Neural Information Processing Systems (NeurIPS), 2014
1 July 2014
Aaron Defazio
Francis R. Bach
Damien Scieur
ODL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives"
50 / 879 papers shown
Urban land-use analysis using proximate sensing imagery: a survey
International Journal of Geographical Information Science (IJGIS), 2021
Zhinan Qiao
Xiaohui Yuan
223
21
0
13 Jan 2021
Accelerated, Optimal, and Parallel: Some Results on Model-Based Stochastic Optimization
International Conference on Machine Learning (ICML), 2021
Karan N. Chadha
Gary Cheng
John C. Duchi
180
17
0
07 Jan 2021
Delayed Projection Techniques for Linearly Constrained Problems: Convergence Rates, Acceleration, and Applications
Xiang Li
Zhihua Zhang
158
4
0
05 Jan 2021
Learning Sign-Constrained Support Vector Machines
International Conference on Pattern Recognition (ICPR), 2021
Kenya Tajima
Takahiko Henmi
Kohei Tsuchida
E. R. R. Zara
Tsuyoshi Kato
75
2
0
05 Jan 2021
PMGT-VR: A decentralized proximal-gradient algorithmic framework with variance reduction
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2020
Haishan Ye
Wei Xiong
Tong Zhang
328
16
0
30 Dec 2020
Fast Incremental Expectation Maximization for finite-sum optimization: nonasymptotic convergence
Statistics and computing (Stat. Comput.), 2020
G. Fort
Pierre Gach
Eric Moulines
177
10
0
29 Dec 2020
Variance Reduction on General Adaptive Stochastic Mirror Descent
Machine-mediated learning (ML), 2020
Wenjie Li
Zhanyu Wang
Yichen Zhang
Guang Cheng
289
5
0
26 Dec 2020
On self-supervised multi-modal representation learning: An application to Alzheimer's disease
IEEE International Symposium on Biomedical Imaging (ISBI), 2020
A. Fedorov
Lei Wu
Tristan Sylvain
Margaux Luck
T. DeRamus
Dmitry Bleklov
Sergey Plis
Vince D. Calhoun
SSL
201
18
0
25 Dec 2020
Zeroth-Order Hybrid Gradient Descent: Towards A Principled Black-Box Optimization Framework
Pranay Sharma
Kaidi Xu
Sijia Liu
Pin-Yu Chen
Xue Lin
P. Varshney
116
2
0
21 Dec 2020
Recent Theoretical Advances in Non-Convex Optimization
Marina Danilova
Pavel Dvurechensky
Alexander Gasnikov
Eduard A. Gorbunov
Sergey Guminov
Dmitry Kamzolov
Innokentiy Shibaev
353
104
0
11 Dec 2020
Optimising cost vs accuracy of decentralised analytics in fog computing environments
IEEE Transactions on Network Science and Engineering (IEEE Trans. Netw. Sci. Eng.), 2020
Lorenzo Valerio
A. Passarella
M. Conti
217
1
0
09 Dec 2020
A Primal-Dual Framework for Decentralized Stochastic Optimization
K. Rajawat
C. Kumar
169
7
0
08 Dec 2020
Faster Non-Convex Federated Learning via Global and Local Momentum
Rudrajit Das
Anish Acharya
Abolfazl Hashemi
Sujay Sanghavi
Inderjit S. Dhillon
Ufuk Topcu
FedML
528
96
0
07 Dec 2020
A Variant of Gradient Descent Algorithm Based on Gradient Averaging
Saugata Purkayastha
Sukannya Purkayastha
ODL
134
2
0
04 Dec 2020
A Stochastic Path-Integrated Differential EstimatoR Expectation Maximization Algorithm
G. Fort
Eric Moulines
Hoi-To Wai
TPM
179
7
0
30 Nov 2020
SMG: A Shuffling Gradient-Based Method with Momentum
International Conference on Machine Learning (ICML), 2020
Trang H. Tran
Lam M. Nguyen
Quoc Tran-Dinh
337
23
0
24 Nov 2020
A fast randomized incremental gradient method for decentralized non-convex optimization
Ran Xin
U. Khan
S. Kar
302
38
0
07 Nov 2020
A Linearly Convergent Algorithm for Decentralized Optimization: Sending Less Bits for Free!
D. Kovalev
Anastasia Koloskova
Martin Jaggi
Peter Richtárik
Sebastian U. Stich
214
80
0
03 Nov 2020
Local SGD: Unified Theory and New Efficient Methods
Eduard A. Gorbunov
Filip Hanzely
Peter Richtárik
FedML
250
120
0
03 Nov 2020
Asynchronous Parallel Stochastic Quasi-Newton Methods
Parallel Computing (PC), 2020
Qianqian Tong
Guannan Liang
Xingyu Cai
Chunjiang Zhu
J. Bi
ODL
233
10
0
02 Nov 2020
Variance-Reduced Off-Policy TDC Learning: Non-Asymptotic Convergence Analysis
Neural Information Processing Systems (NeurIPS), 2020
Shaocong Ma
Yi Zhou
Shaofeng Zou
OffRL
314
18
0
26 Oct 2020
Linearly Converging Error Compensated SGD
Neural Information Processing Systems (NeurIPS), 2020
Eduard A. Gorbunov
D. Kovalev
Dmitry Makarenko
Peter Richtárik
363
86
0
23 Oct 2020
Tight Lower Complexity Bounds for Strongly Convex Finite-Sum Optimization
Min Zhang
Yao Shu
Kun He
141
1
0
17 Oct 2020
AEGD: Adaptive Gradient Descent with Energy
Numerical Algebra, Control and Optimization (NACO), 2020
Hailiang Liu
Xuping Tian
ODL
283
12
0
10 Oct 2020
Structured Logconcave Sampling with a Restricted Gaussian Oracle
Y. Lee
Ruoqi Shen
Kevin Tian
413
90
0
07 Oct 2020
Accelerating Convergence of Replica Exchange Stochastic Gradient MCMC via Variance Reduction
International Conference on Learning Representations (ICLR), 2020
Wei Deng
Qi Feng
G. Karagiannis
Guang Lin
F. Liang
285
9
0
02 Oct 2020
Variance-Reduced Methods for Machine Learning
Proceedings of the IEEE (Proc. IEEE), 2020
Robert Mansel Gower
Mark Schmidt
Francis R. Bach
Peter Richtárik
283
146
0
02 Oct 2020
Nonsmoothness in Machine Learning: specific structure, proximal identification, and applications
Set-Valued and Variational Analysis (SVVA), 2020
F. Iutzeler
J. Malick
277
18
0
02 Oct 2020
A variable metric mini-batch proximal stochastic recursive gradient algorithm with diagonal Barzilai-Borwein stepsize
Tengteng Yu
Xinwei Liu
Yuhong Dai
Jie Sun
232
4
0
02 Oct 2020
Online Convex Optimization in Changing Environments and its Application to Resource Allocation
Jianjun Yuan
146
0
0
30 Sep 2020
Cross Learning in Deep Q-Networks
Xing Wang
A. Vinel
84
3
0
29 Sep 2020
RENT -- Repeated Elastic Net Technique for Feature Selection
IEEE Access (IEEE Access), 2020
Anna Jenul
Stefan Schrunner
K. H. Liland
U. Indahl
C. Futsaether
O. Tomic
140
25
0
27 Sep 2020
Asynchronous Distributed Optimization with Stochastic Delays
Margalit Glasgow
Mary Wootters
276
3
0
22 Sep 2020
Hybrid Stochastic-Deterministic Minibatch Proximal Gradient: Less-Than-Single-Pass Optimization with Nearly Optimal Generalization
International Conference on Machine Learning (ICML), 2020
Pan Zhou
Xiaotong Yuan
154
6
0
18 Sep 2020
Effective Proximal Methods for Non-convex Non-smooth Regularized Learning
Industrial Conference on Data Mining (IDM), 2020
Guannan Liang
Qianqian Tong
Jiahao Ding
Miao Pan
J. Bi
257
0
0
14 Sep 2020
Variance-Reduced Off-Policy Memory-Efficient Policy Search
Daoming Lyu
Qi Qi
Mohammad Ghavamzadeh
Hengshuai Yao
Tianbao Yang
Bo Liu
OffRL
192
7
0
14 Sep 2020
A general framework for decentralized optimization with first-order methods
Proceedings of the IEEE (Proc. IEEE), 2020
Ran Xin
Shi Pu
Angelia Nedić
U. Khan
211
102
0
12 Sep 2020
Beyond variance reduction: Understanding the true impact of baselines on policy optimization
International Conference on Machine Learning (ICML), 2020
Wesley Chung
Valentin Thomas
Marlos C. Machado
Nicolas Le Roux
OffRL
421
31
0
31 Aug 2020
Optimization for Supervised Machine Learning: Randomized Algorithms for Data and Parameters
Filip Hanzely
219
0
0
26 Aug 2020
Variance-Reduced Splitting Schemes for Monotone Stochastic Generalized Equations
IEEE Transactions on Automatic Control (TAC), 2020
Shisheng Cui
U. Shanbhag
140
7
0
26 Aug 2020
PAGE: A Simple and Optimal Probabilistic Gradient Estimator for Nonconvex Optimization
International Conference on Machine Learning (ICML), 2020
Zhize Li
Hongyan Bao
Xiangliang Zhang
Peter Richtárik
ODL
357
154
0
25 Aug 2020
Solving Stochastic Compositional Optimization is Nearly as Easy as Solving Stochastic Optimization
IEEE Transactions on Signal Processing (TSP), 2020
Tianyi Chen
Yuejiao Sun
W. Yin
231
91
0
25 Aug 2020
Channel-Directed Gradients for Optimization of Convolutional Neural Networks
Dong Lao
Peihao Zhu
Peter Wonka
G. Sundaramoorthi
199
3
0
25 Aug 2020
Single-Timescale Stochastic Nonconvex-Concave Optimization for Smooth Nonlinear TD Learning
Delin Qu
Zhuoran Yang
Xiaohan Wei
Jieping Ye
Zhaoran Wang
405
39
0
23 Aug 2020
Neural Neighborhood Encoding for Classification
Kaushik Sinha
Parikshit Ram
116
1
0
19 Aug 2020
Fast decentralized non-convex finite-sum optimization with recursive variance reduction
Ran Xin
U. Khan
S. Kar
459
48
0
17 Aug 2020
Variance reduction for dependent sequences with applications to Stochastic Gradient MCMC
Denis Belomestny
L. Iosipoi
Eric Moulines
A. Naumov
S. Samsonov
206
7
0
16 Aug 2020
Privacy-Preserving Asynchronous Federated Learning Algorithms for Multi-Party Vertically Collaborative Learning
Bin Gu
An Xu
Zhouyuan Huo
Cheng Deng
Heng-Chiao Huang
FedML
214
31
0
14 Aug 2020
Push-SAGA: A decentralized stochastic algorithm with variance reduction over directed graphs
Muhammad I. Qureshi
Ran Xin
S. Kar
U. Khan
338
29
0
13 Aug 2020
A Survey on Large-scale Machine Learning
IEEE Transactions on Knowledge and Data Engineering (TKDE), 2020
Meng Wang
Weijie Fu
Xiangnan He
Shijie Hao
Xindong Wu
194
144
0
10 Aug 2020
Previous
1
2
3
...
7
8
9
...
16
17
18
Next
Page 8 of 18
Page
of 18
Go