Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1407.0202
Cited By
SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives
1 July 2014
Aaron Defazio
Francis R. Bach
Simon Lacoste-Julien
ODL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives"
50 / 353 papers shown
Title
Optimization for Supervised Machine Learning: Randomized Algorithms for Data and Parameters
Filip Hanzely
42
0
0
26 Aug 2020
PAGE: A Simple and Optimal Probabilistic Gradient Estimator for Nonconvex Optimization
Zhize Li
Hongyan Bao
Xiangliang Zhang
Peter Richtárik
ODL
33
126
0
25 Aug 2020
Solving Stochastic Compositional Optimization is Nearly as Easy as Solving Stochastic Optimization
Tianyi Chen
Yuejiao Sun
W. Yin
48
81
0
25 Aug 2020
Single-Timescale Stochastic Nonconvex-Concave Optimization for Smooth Nonlinear TD Learning
Shuang Qiu
Zhuoran Yang
Xiaohan Wei
Jieping Ye
Zhaoran Wang
33
38
0
23 Aug 2020
Privacy-Preserving Asynchronous Federated Learning Algorithms for Multi-Party Vertically Collaborative Learning
Bin Gu
An Xu
Zhouyuan Huo
Cheng Deng
Heng-Chiao Huang
FedML
38
28
0
14 Aug 2020
A Survey on Large-scale Machine Learning
Meng Wang
Weijie Fu
Xiangnan He
Shijie Hao
Xindong Wu
25
110
0
10 Aug 2020
Variance Reduction for Deep Q-Learning using Stochastic Recursive Gradient
Hao Jia
Xiao Zhang
Jun Xu
Wei Zeng
Hao Jiang
Xiao Yan
Ji-Rong Wen
27
3
0
25 Jul 2020
On stochastic mirror descent with interacting particles: convergence properties and variance reduction
Anastasia Borovykh
N. Kantas
P. Parpas
G. Pavliotis
35
12
0
15 Jul 2020
AdaScale SGD: A User-Friendly Algorithm for Distributed Training
Tyler B. Johnson
Pulkit Agrawal
Haijie Gu
Carlos Guestrin
ODL
30
37
0
09 Jul 2020
Stochastic Hamiltonian Gradient Methods for Smooth Games
Nicolas Loizou
Hugo Berard
Alexia Jolicoeur-Martineau
Pascal Vincent
Simon Lacoste-Julien
Ioannis Mitliagkas
41
50
0
08 Jul 2020
Stochastic Stein Discrepancies
Jackson Gorham
Anant Raj
Lester W. Mackey
32
37
0
06 Jul 2020
Variance Reduction via Accelerated Dual Averaging for Finite-Sum Optimization
Chaobing Song
Yong Jiang
Yi Ma
53
23
0
18 Jun 2020
Minibatch vs Local SGD for Heterogeneous Distributed Learning
Blake E. Woodworth
Kumar Kshitij Patel
Nathan Srebro
FedML
22
199
0
08 Jun 2020
Federated Stochastic Gradient Langevin Dynamics
Khaoula El Mekkaoui
Diego Mesquita
P. Blomstedt
Samuel Kaski
FedML
37
24
0
23 Apr 2020
On Linear Stochastic Approximation: Fine-grained Polyak-Ruppert and Non-Asymptotic Concentration
Wenlong Mou
C. J. Li
Martin J. Wainwright
Peter L. Bartlett
Michael I. Jordan
33
75
0
09 Apr 2020
Block Layer Decomposition schemes for training Deep Neural Networks
L. Palagi
R. Seccia
33
5
0
18 Mar 2020
Adaptive Federated Optimization
Sashank J. Reddi
Zachary B. Charles
Manzil Zaheer
Zachary Garrett
Keith Rush
Jakub Konecný
Sanjiv Kumar
H. B. McMahan
FedML
58
1,395
0
29 Feb 2020
Adaptive Sampling Distributed Stochastic Variance Reduced Gradient for Heterogeneous Distributed Datasets
Ilqar Ramazanli
Han Nguyen
Hai Pham
Sashank J. Reddi
Barnabás Póczós
23
11
0
20 Feb 2020
A Unified Convergence Analysis for Shuffling-Type Gradient Methods
Lam M. Nguyen
Quoc Tran-Dinh
Dzung Phan
Phuong Ha Nguyen
Marten van Dijk
39
78
0
19 Feb 2020
A Newton Frank-Wolfe Method for Constrained Self-Concordant Minimization
Deyi Liu
V. Cevher
Quoc Tran-Dinh
38
15
0
17 Feb 2020
Sampling and Update Frequencies in Proximal Variance-Reduced Stochastic Gradient Methods
Martin Morin
Pontus Giselsson
27
4
0
13 Feb 2020
Gradient tracking and variance reduction for decentralized optimization and machine learning
Ran Xin
S. Kar
U. Khan
19
10
0
13 Feb 2020
Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization
Samuel Horváth
Lihua Lei
Peter Richtárik
Michael I. Jordan
57
30
0
13 Feb 2020
Variance Reduced Coordinate Descent with Acceleration: New Method With a Surprising Application to Finite-Sum Problems
Filip Hanzely
D. Kovalev
Peter Richtárik
40
17
0
11 Feb 2020
Better Theory for SGD in the Nonconvex World
Ahmed Khaled
Peter Richtárik
13
180
0
09 Feb 2020
Adaptive Stochastic Optimization
Frank E. Curtis
K. Scheinberg
ODL
19
29
0
18 Jan 2020
Variance Reduced Local SGD with Lower Communication Complexity
Xian-Feng Liang
Shuheng Shen
Jingchang Liu
Zhen Pan
Enhong Chen
Yifei Cheng
FedML
44
152
0
30 Dec 2019
Federated Variance-Reduced Stochastic Gradient Descent with Robustness to Byzantine Attacks
Zhaoxian Wu
Qing Ling
Tianyi Chen
G. Giannakis
FedML
AAML
32
181
0
29 Dec 2019
Optimization for deep learning: theory and algorithms
Ruoyu Sun
ODL
30
168
0
19 Dec 2019
Cyanure: An Open-Source Toolbox for Empirical Risk Minimization for Python, C++, and soon more
Julien Mairal
24
22
0
17 Dec 2019
On the Global Convergence of (Fast) Incremental Expectation Maximization Methods
Belhal Karimi
Hoi-To Wai
Eric Moulines
M. Lavielle
32
27
0
28 Oct 2019
Differentiable Convex Optimization Layers
Akshay Agrawal
Brandon Amos
Shane T. Barratt
Stephen P. Boyd
Steven Diamond
Zico Kolter
50
640
0
28 Oct 2019
Katyusha Acceleration for Convex Finite-Sum Compositional Optimization
Yibo Xu
Yangyang Xu
87
13
0
24 Oct 2019
The Practicality of Stochastic Optimization in Imaging Inverse Problems
Junqi Tang
K. Egiazarian
Mohammad Golbabaee
Mike Davies
27
30
0
22 Oct 2019
History-Gradient Aided Batch Size Adaptation for Variance Reduced Algorithms
Kaiyi Ji
Zhe Wang
Bowen Weng
Yi Zhou
Wei Zhang
Yingbin Liang
ODL
18
5
0
21 Oct 2019
Aggregated Gradient Langevin Dynamics
Chao Zhang
Jiahao Xie
Zebang Shen
P. Zhao
Tengfei Zhou
Hui Qian
33
1
0
21 Oct 2019
General Proximal Incremental Aggregated Gradient Algorithms: Better and Novel Results under General Scheme
Tao Sun
Yuejiao Sun
Dongsheng Li
Qing Liao
35
16
0
11 Oct 2019
Variance-Reduced Decentralized Stochastic Optimization with Gradient Tracking -- Part II: GT-SVRG
Ran Xin
U. Khan
S. Kar
22
8
0
08 Oct 2019
Sample Efficient Policy Gradient Methods with Recursive Variance Reduction
Pan Xu
F. Gao
Quanquan Gu
33
83
0
18 Sep 2019
Trajectory-wise Control Variates for Variance Reduction in Policy Gradient Methods
Ching-An Cheng
Xinyan Yan
Byron Boots
30
22
0
08 Aug 2019
Mix and Match: An Optimistic Tree-Search Approach for Learning Models from Mixture Distributions
Matthew Faw
Rajat Sen
Karthikeyan Shanmugam
Constantine Caramanis
Sanjay Shakkottai
36
3
0
23 Jul 2019
Stochastic Variance Reduced Primal Dual Algorithms for Empirical Composition Optimization
Adithya M. Devraj
Jianshu Chen
30
13
0
22 Jul 2019
A Hybrid Stochastic Optimization Framework for Stochastic Composite Nonconvex Optimization
Quoc Tran-Dinh
Nhan H. Pham
T. Dzung
Lam M. Nguyen
27
49
0
08 Jul 2019
Learning Activation Functions: A new paradigm for understanding Neural Networks
Mohit Goyal
R. Goyal
Brejesh Lall
33
64
0
23 Jun 2019
A Unifying Framework for Variance Reduction Algorithms for Finding Zeroes of Monotone Operators
Xun Zhang
W. Haskell
Z. Ye
25
3
0
22 Jun 2019
Reducing the variance in online optimization by transporting past gradients
Sébastien M. R. Arnold
Pierre-Antoine Manzagol
Reza Babanezhad
Ioannis Mitliagkas
Nicolas Le Roux
26
28
0
08 Jun 2019
Global Optimality Guarantees For Policy Gradient Methods
Jalaj Bhandari
Daniel Russo
39
186
0
05 Jun 2019
Why gradient clipping accelerates training: A theoretical justification for adaptivity
J.N. Zhang
Tianxing He
S. Sra
Ali Jadbabaie
30
446
0
28 May 2019
Natural Compression for Distributed Deep Learning
Samuel Horváth
Chen-Yu Ho
L. Horvath
Atal Narayan Sahu
Marco Canini
Peter Richtárik
21
151
0
27 May 2019
Painless Stochastic Gradient: Interpolation, Line-Search, and Convergence Rates
Sharan Vaswani
Aaron Mishkin
I. Laradji
Mark Schmidt
Gauthier Gidel
Simon Lacoste-Julien
ODL
50
205
0
24 May 2019
Previous
1
2
3
4
5
6
7
8
Next