Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
1407.0202
Cited By
v1
v2
v3 (latest)
SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives
Neural Information Processing Systems (NeurIPS), 2014
1 July 2014
Aaron Defazio
Francis R. Bach
Damien Scieur
ODL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives"
50 / 878 papers shown
Stochastic Approximation Beyond Gradient for Signal Processing and Machine Learning
IEEE Transactions on Signal Processing (IEEE TSP), 2023
Hadrien Hendrikx
G. Fort
Eric Moulines
Hoi-To Wai
252
16
0
22 Feb 2023
A Lower Bound and a Near-Optimal Algorithm for Bilevel Empirical Risk Minimization
International Conference on Artificial Intelligence and Statistics (AISTATS), 2023
Mathieu Dagréou
Thomas Moreau
Samuel Vaiter
Pierre Ablin
283
17
0
17 Feb 2023
Statistically Optimal Force Aggregation for Coarse-Graining Molecular Dynamics
Journal of Physical Chemistry Letters (JPCL), 2023
Andreas Krämer
Aleksander E. P. Durumeric
N. Charron
Yaoyi Chen
C. Clementi
Frank Noé
AI4CE
202
28
0
14 Feb 2023
Breaking the Lower Bound with (Little) Structure: Acceleration in Non-Convex Stochastic Optimization with Heavy-Tailed Noise
Annual Conference Computational Learning Theory (COLT), 2023
Zijian Liu
Jiawei Zhang
Zhengyuan Zhou
234
23
0
14 Feb 2023
DIFF2: Differential Private Optimization via Gradient Differences for Nonconvex Distributed Learning
International Conference on Machine Learning (ICML), 2023
Tomoya Murata
Taiji Suzuki
238
11
0
08 Feb 2023
Stable Target Field for Reduced Variance Score Estimation in Diffusion Models
International Conference on Learning Representations (ICLR), 2023
Yilun Xu
Shangyuan Tong
Tommi Jaakkola
DiffM
300
40
0
01 Feb 2023
Deep networks for system identification: a Survey
G. Pillonetto
Aleksandr Aravkin
Daniel Gedon
L. Ljung
Antônio H. Ribeiro
Thomas B. Schon
OOD
326
91
0
30 Jan 2023
Learning Large Scale Sparse Models
A. Dhingra
Jie Shen
Nicholas Kleene
177
0
0
26 Jan 2023
Optirank: classification for RNA-Seq data with optimal ranking reference genes
Paola Malsot
F. Martins
D. Trono
G. Obozinski
87
1
0
11 Jan 2023
Balance is Essence: Accelerating Sparse Training via Adaptive Gradient Correction
Bowen Lei
Dongkuan Xu
Ruqi Zhang
Shuren He
Bani Mallick
289
6
0
09 Jan 2023
Sharper Analysis for Minibatch Stochastic Proximal Point Methods: Stability, Smoothness, and Deviation
Journal of machine learning research (JMLR), 2023
Xiao-Tong Yuan
P. Li
225
2
0
09 Jan 2023
Randomized Block-Coordinate Optimistic Gradient Algorithms for Root-Finding Problems
Mathematics of Operations Research (MOR), 2023
Quoc Tran-Dinh
Yang Luo
597
11
0
08 Jan 2023
Stochastic Variable Metric Proximal Gradient with variance reduction for non-convex composite optimization
Statistics and computing (Stat. Comput.), 2023
G. Fort
Eric Moulines
258
7
0
02 Jan 2023
Can 5th Generation Local Training Methods Support Client Sampling? Yes!
International Conference on Artificial Intelligence and Statistics (AISTATS), 2022
Michal Grudzieñ
Grigory Malinovsky
Peter Richtárik
335
33
0
29 Dec 2022
Gradient Descent-Type Methods: Background and Simple Unified Convergence Analysis
Quoc Tran-Dinh
Marten van Dijk
161
1
0
19 Dec 2022
Variance-Reduced Conservative Policy Iteration
International Conference on Algorithmic Learning Theory (ALT), 2022
Naman Agarwal
Brian Bullins
Karan Singh
199
3
0
12 Dec 2022
Stochastic Optimization for Spectral Risk Measures
International Conference on Artificial Intelligence and Statistics (AISTATS), 2022
Ronak R. Mehta
Vincent Roulet
Krishna Pillutla
Lang Liu
Zaïd Harchaoui
184
8
0
10 Dec 2022
Cyclic Block Coordinate Descent With Variance Reduction for Composite Nonconvex Optimization
International Conference on Machine Learning (ICML), 2022
Xu Cai
Chaobing Song
Stephen J. Wright
Jelena Diakonikolas
263
21
0
09 Dec 2022
BALPA: A Balanced Primal-Dual Algorithm for Nonsmooth Optimization with Application to Distributed Optimization
Luyao Guo
Jinde Cao
Xinli Shi
Shaofu Yang
170
0
0
06 Dec 2022
On the effectiveness of partial variance reduction in federated learning with heterogeneous data
Yue Liu
Mikkel N. Schmidt
T. S. Alstrøm
Sebastian U. Stich
FedML
264
9
0
05 Dec 2022
Convergence of ease-controlled Random Reshuffling gradient Algorithms under Lipschitz smoothness
Computational optimization and applications (Comput. Optim. Appl.), 2022
R. Seccia
Corrado Coppola
G. Liuzzi
L. Palagi
330
2
0
04 Dec 2022
Covariance Estimators for the ROOT-SGD Algorithm in Online Learning
Yiling Luo
X. Huo
Y. Mei
143
3
0
02 Dec 2022
Closing the gap between SVRG and TD-SVRG with Gradient Splitting
Arsenii Mustafin
Alexander Olshevsky
I. Paschalidis
169
2
0
29 Nov 2022
Stochastic Steffensen method
Computational optimization and applications (Comput. Optim. Appl.), 2022
Minda Zhao
Zehua Lai
Lek-Heng Lim
ODL
137
4
0
28 Nov 2022
Zeroth-Order Alternating Gradient Descent Ascent Algorithms for a Class of Nonconvex-Nonconcave Minimax Problems
Journal of machine learning research (JMLR), 2022
Zi Xu
Ziqi Wang
Junlin Wang
Y. Dai
270
14
0
24 Nov 2022
Impact of Redundancy on Resilience in Distributed Optimization and Learning
International Conference of Distributed Computing and Networking (ICDCN), 2022
Shuo Liu
Nirupam Gupta
Nitin H. Vaidya
303
3
0
16 Nov 2022
SketchySGD: Reliable Stochastic Optimization via Randomized Curvature Estimates
SIAM Journal on Mathematics of Data Science (SIMODS), 2022
Zachary Frangella
Pratik Rathore
Shipu Zhao
Madeleine Udell
409
8
0
16 Nov 2022
An Improved Analysis of (Variance-Reduced) Policy Gradient and Natural Policy Gradient Methods
Neural Information Processing Systems (NeurIPS), 2022
Yanli Liu
Jianchao Tan
Tamer Basar
W. Yin
341
120
0
15 Nov 2022
Adaptive Stochastic Variance Reduction for Non-convex Finite-Sum Minimization
Neural Information Processing Systems (NeurIPS), 2022
Ali Kavis
Stratis Skoulakis
Kimon Antonakopoulos
L. Dadi
Volkan Cevher
253
19
0
03 Nov 2022
Coresets for Vertical Federated Learning: Regularized Linear Regression and
K
K
K
-Means Clustering
Neural Information Processing Systems (NeurIPS), 2022
Lingxiao Huang
Zhize Li
Jialin Sun
Haoyu Zhao
FedML
209
18
0
26 Oct 2022
Block-wise Primal-dual Algorithms for Large-scale Doubly Penalized ANOVA Modeling
Computational Statistics & Data Analysis (CSDA), 2022
Penghui Fu
Z. Tan
147
7
0
20 Oct 2022
Unsupervised visualization of image datasets using contrastive learning
International Conference on Learning Representations (ICLR), 2022
Jan Boehm
Philipp Berens
D. Kobak
SSL
412
22
0
18 Oct 2022
Joint control variate for faster black-box variational inference
International Conference on Artificial Intelligence and Statistics (AISTATS), 2022
Xi Wang
Tomas Geffner
Justin Domke
BDL
DRL
291
0
0
13 Oct 2022
SARAH-based Variance-reduced Algorithm for Stochastic Finite-sum Cocoercive Variational Inequalities
Aleksandr Beznosikov
Alexander Gasnikov
232
3
0
12 Oct 2022
Double Averaging and Gradient Projection: Convergence Guarantees for Decentralized Constrained Optimization
IEEE Transactions on Automatic Control (TAC), 2022
Firooz Shahriari-Mehr
Ashkan Panahi
223
2
0
06 Oct 2022
A One-shot Framework for Distributed Clustered Learning in Heterogeneous Environments
IEEE Transactions on Signal Processing (IEEE Trans. Signal Process.), 2022
Aleksandar Armacki
Dragana Bajović
D. Jakovetić
S. Kar
FedML
598
8
0
22 Sep 2022
Self-supervised multimodal neuroimaging yields predictive representations for a spectrum of Alzheimer's phenotypes
A. Fedorov
Eloy P. T. Geenjaar
Lei Wu
Tristan Sylvain
T. DeRamus
Margaux Luck
Maria B. Misiura
R. Devon Hjelm
Sergey Plis
Vince D. Calhoun
128
3
0
07 Sep 2022
Faster federated optimization under second-order similarity
International Conference on Learning Representations (ICLR), 2022
Ahmed Khaled
Chi Jin
FedML
288
24
0
06 Sep 2022
Versatile Single-Loop Method for Gradient Estimator: First and Second Order Optimality, and its Application to Federated Learning
Kazusato Oko
Shunta Akiyama
Tomoya Murata
Taiji Suzuki
FedML
228
0
0
01 Sep 2022
Smooth Monotone Stochastic Variational Inequalities and Saddle Point Problems: A Survey
European Mathematical Society Magazine (EMS Magazine), 2022
Aleksandr Beznosikov
Boris Polyak
Eduard A. Gorbunov
D. Kovalev
Alexander Gasnikov
313
33
0
29 Aug 2022
A Stochastic Variance Reduced Gradient using Barzilai-Borwein Techniques as Second Order Information
Journal of Industrial and Management Optimization (JIMO), 2022
Hardik Tankaria
N. Yamashita
166
1
0
23 Aug 2022
Simple and Optimal Stochastic Gradient Methods for Nonsmooth Nonconvex Optimization
Journal of machine learning research (JMLR), 2022
Zhize Li
Jian Li
262
9
0
22 Aug 2022
SYNTHESIS: A Semi-Asynchronous Path-Integrated Stochastic Gradient Method for Distributed Learning in Computing Clusters
ACM Interational Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc), 2022
Zhuqing Liu
Xin Zhang
Jia-Wei Liu
235
1
0
17 Aug 2022
Long-Short History of Gradients is All You Need: Detecting Malicious and Unreliable Clients in Federated Learning
European Symposium on Research in Computer Security (ESORICS), 2022
Ashish Gupta
Tie-Mei Luo
Mao V. Ngo
Sajal K. Das
AAML
FedML
197
25
0
14 Aug 2022
An Accelerated Doubly Stochastic Gradient Method with Faster Explicit Model Identification
International Conference on Information and Knowledge Management (CIKM), 2022
Runxue Bao
Bin Gu
Heng-Chiao Huang
264
18
0
11 Aug 2022
Pairwise Learning via Stagewise Training in Proximal Setting
Hilal AlQuabeh
Aliakbar Abdurahimov
138
2
0
08 Aug 2022
Decomposable Non-Smooth Convex Optimization with Nearly-Linear Gradient Oracle Complexity
Neural Information Processing Systems (NeurIPS), 2022
Sally Dong
Haotian Jiang
Y. Lee
Swati Padmanabhan
Guanghao Ye
221
2
0
07 Aug 2022
SGEM: stochastic gradient with energy and momentum
Hailiang Liu
Xuping Tian
129
4
0
03 Aug 2022
Stochastic Primal-Dual Three Operator Splitting Algorithm with Extension to Equivariant Regularization-by-Denoising
Junqi Tang
Matthias Joachim Ehrhardt
Carola-Bibiane Schönlieb
259
0
0
02 Aug 2022
FedVARP: Tackling the Variance Due to Partial Client Participation in Federated Learning
Conference on Uncertainty in Artificial Intelligence (UAI), 2022
Divyansh Jhunjhunwala
Pranay Sharma
Aushim Nagarkatti
Gauri Joshi
FedML
236
87
0
28 Jul 2022
Previous
1
2
3
4
5
...
16
17
18
Next