ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1407.0202
  4. Cited By
SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly
  Convex Composite Objectives

SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives

1 July 2014
Aaron Defazio
Francis R. Bach
Simon Lacoste-Julien
    ODL
ArXivPDFHTML

Papers citing "SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives"

50 / 353 papers shown
Title
Solving Empirical Risk Minimization in the Current Matrix Multiplication
  Time
Solving Empirical Risk Minimization in the Current Matrix Multiplication Time
Y. Lee
Zhao Song
Qiuyi Zhang
24
115
0
11 May 2019
Stochastic Iterative Hard Thresholding for Graph-structured Sparsity
  Optimization
Stochastic Iterative Hard Thresholding for Graph-structured Sparsity Optimization
Baojian Zhou
F. Chen
Yiming Ying
34
7
0
09 May 2019
Stabilized SVRG: Simple Variance Reduction for Nonconvex Optimization
Stabilized SVRG: Simple Variance Reduction for Nonconvex Optimization
Rong Ge
Zhize Li
Weiyao Wang
Xiang Wang
19
34
0
01 May 2019
Reducing Noise in GAN Training with Variance Reduced Extragradient
Reducing Noise in GAN Training with Variance Reduced Extragradient
Tatjana Chavdarova
Gauthier Gidel
François Fleuret
Simon Lacoste-Julien
25
135
0
18 Apr 2019
On the Adaptivity of Stochastic Gradient-Based Optimization
On the Adaptivity of Stochastic Gradient-Based Optimization
Lihua Lei
Michael I. Jordan
ODL
24
22
0
09 Apr 2019
Cocoercivity, Smoothness and Bias in Variance-Reduced Stochastic
  Gradient Methods
Cocoercivity, Smoothness and Bias in Variance-Reduced Stochastic Gradient Methods
Martin Morin
Pontus Giselsson
20
2
0
21 Mar 2019
An Empirical Study of Large-Batch Stochastic Gradient Descent with
  Structured Covariance Noise
An Empirical Study of Large-Batch Stochastic Gradient Descent with Structured Covariance Noise
Yeming Wen
Kevin Luk
Maxime Gazeau
Guodong Zhang
Harris Chan
Jimmy Ba
ODL
25
22
0
21 Feb 2019
Faster Gradient-Free Proximal Stochastic Methods for Nonconvex Nonsmooth
  Optimization
Faster Gradient-Free Proximal Stochastic Methods for Nonconvex Nonsmooth Optimization
Feihu Huang
Bin Gu
Zhouyuan Huo
Songcan Chen
Heng-Chiao Huang
14
26
0
16 Feb 2019
ProxSARAH: An Efficient Algorithmic Framework for Stochastic Composite
  Nonconvex Optimization
ProxSARAH: An Efficient Algorithmic Framework for Stochastic Composite Nonconvex Optimization
Nhan H. Pham
Lam M. Nguyen
Dzung Phan
Quoc Tran-Dinh
18
139
0
15 Feb 2019
Quasi-Newton Methods for Machine Learning: Forget the Past, Just Sample
Quasi-Newton Methods for Machine Learning: Forget the Past, Just Sample
A. Berahas
Majid Jahani
Peter Richtárik
Martin Takávc
24
40
0
28 Jan 2019
Asynchronous Accelerated Proximal Stochastic Gradient for Strongly
  Convex Distributed Finite Sums
Asynchronous Accelerated Proximal Stochastic Gradient for Strongly Convex Distributed Finite Sums
Hadrien Hendrikx
Francis R. Bach
Laurent Massoulié
FedML
21
26
0
28 Jan 2019
99% of Distributed Optimization is a Waste of Time: The Issue and How to
  Fix it
99% of Distributed Optimization is a Waste of Time: The Issue and How to Fix it
Konstantin Mishchenko
Filip Hanzely
Peter Richtárik
16
13
0
27 Jan 2019
Estimate Sequences for Stochastic Composite Optimization: Variance
  Reduction, Acceleration, and Robustness to Noise
Estimate Sequences for Stochastic Composite Optimization: Variance Reduction, Acceleration, and Robustness to Noise
A. Kulunchakov
Julien Mairal
34
44
0
25 Jan 2019
Don't Jump Through Hoops and Remove Those Loops: SVRG and Katyusha are
  Better Without the Outer Loop
Don't Jump Through Hoops and Remove Those Loops: SVRG and Katyusha are Better Without the Outer Loop
D. Kovalev
Samuel Horváth
Peter Richtárik
36
155
0
24 Jan 2019
SAGA with Arbitrary Sampling
SAGA with Arbitrary Sampling
Xun Qian
Zheng Qu
Peter Richtárik
37
25
0
24 Jan 2019
SGD Converges to Global Minimum in Deep Learning via Star-convex Path
SGD Converges to Global Minimum in Deep Learning via Star-convex Path
Yi Zhou
Junjie Yang
Huishuai Zhang
Yingbin Liang
Vahid Tarokh
22
71
0
02 Jan 2019
On the Ineffectiveness of Variance Reduced Optimization for Deep
  Learning
On the Ineffectiveness of Variance Reduced Optimization for Deep Learning
Aaron Defazio
Léon Bottou
UQCV
DRL
23
112
0
11 Dec 2018
Asynchronous Stochastic Composition Optimization with Variance Reduction
Asynchronous Stochastic Composition Optimization with Variance Reduction
Shuheng Shen
Linli Xu
Jingchang Liu
Junliang Guo
Qing Ling
27
2
0
15 Nov 2018
R-SPIDER: A Fast Riemannian Stochastic Optimization Algorithm with
  Curvature Independent Rate
R-SPIDER: A Fast Riemannian Stochastic Optimization Algorithm with Curvature Independent Rate
J.N. Zhang
Hongyi Zhang
S. Sra
26
39
0
10 Nov 2018
New Convergence Aspects of Stochastic Gradient Algorithms
New Convergence Aspects of Stochastic Gradient Algorithms
Lam M. Nguyen
Phuong Ha Nguyen
Peter Richtárik
K. Scheinberg
Martin Takáč
Marten van Dijk
33
66
0
10 Nov 2018
Efficient Distributed Hessian Free Algorithm for Large-scale Empirical
  Risk Minimization via Accumulating Sample Strategy
Efficient Distributed Hessian Free Algorithm for Large-scale Empirical Risk Minimization via Accumulating Sample Strategy
Majid Jahani
Xi He
Chenxin Ma
Aryan Mokhtari
Dheevatsa Mudigere
Alejandro Ribeiro
Martin Takáč
30
18
0
26 Oct 2018
SpiderBoost and Momentum: Faster Stochastic Variance Reduction
  Algorithms
SpiderBoost and Momentum: Faster Stochastic Variance Reduction Algorithms
Zhe Wang
Kaiyi Ji
Yi Zhou
Yingbin Liang
Vahid Tarokh
ODL
35
81
0
25 Oct 2018
Multi-Agent Fully Decentralized Value Function Learning with Linear
  Convergence Rates
Multi-Agent Fully Decentralized Value Function Learning with Linear Convergence Rates
Lucas Cassano
Kun Yuan
Ali H. Sayed
22
39
0
17 Oct 2018
Fast and Faster Convergence of SGD for Over-Parameterized Models and an
  Accelerated Perceptron
Fast and Faster Convergence of SGD for Over-Parameterized Models and an Accelerated Perceptron
Sharan Vaswani
Francis R. Bach
Mark Schmidt
30
296
0
16 Oct 2018
Quasi-hyperbolic momentum and Adam for deep learning
Quasi-hyperbolic momentum and Adam for deep learning
Jerry Ma
Denis Yarats
ODL
84
129
0
16 Oct 2018
Characterization of Convex Objective Functions and Optimal Expected
  Convergence Rates for SGD
Characterization of Convex Objective Functions and Optimal Expected Convergence Rates for SGD
Marten van Dijk
Lam M. Nguyen
Phuong Ha Nguyen
Dzung Phan
36
6
0
09 Oct 2018
POLO: a POLicy-based Optimization library
POLO: a POLicy-based Optimization library
Arda Aytekin
Martin Biel
M. Johansson
25
3
0
08 Oct 2018
Accelerating Stochastic Gradient Descent Using Antithetic Sampling
Accelerating Stochastic Gradient Descent Using Antithetic Sampling
Jingchang Liu
Linli Xu
19
2
0
07 Oct 2018
Continuous-time Models for Stochastic Optimization Algorithms
Continuous-time Models for Stochastic Optimization Algorithms
Antonio Orvieto
Aurelien Lucchi
19
31
0
05 Oct 2018
A fast quasi-Newton-type method for large-scale stochastic optimisation
A fast quasi-Newton-type method for large-scale stochastic optimisation
A. Wills
Carl Jidling
Thomas B. Schon
ODL
36
7
0
29 Sep 2018
Optimal Matrix Momentum Stochastic Approximation and Applications to
  Q-learning
Optimal Matrix Momentum Stochastic Approximation and Applications to Q-learning
Adithya M. Devraj
Ana Bušić
Sean P. Meyn
22
4
0
17 Sep 2018
SEGA: Variance Reduction via Gradient Sketching
SEGA: Variance Reduction via Gradient Sketching
Filip Hanzely
Konstantin Mishchenko
Peter Richtárik
25
71
0
09 Sep 2018
On the Acceleration of L-BFGS with Second-Order Information and
  Stochastic Batches
On the Acceleration of L-BFGS with Second-Order Information and Stochastic Batches
Jie Liu
Yu Rong
Martin Takáč
Junzhou Huang
ODL
38
7
0
14 Jul 2018
Dual optimization for convex constrained objectives without the
  gradient-Lipschitz assumption
Dual optimization for convex constrained objectives without the gradient-Lipschitz assumption
Martin Bompaire
Emmanuel Bacry
Stéphane Gaïffas
30
6
0
10 Jul 2018
SPIDER: Near-Optimal Non-Convex Optimization via Stochastic Path
  Integrated Differential Estimator
SPIDER: Near-Optimal Non-Convex Optimization via Stochastic Path Integrated Differential Estimator
Cong Fang
C. J. Li
Zhouchen Lin
Tong Zhang
50
571
0
04 Jul 2018
Quasi-Monte Carlo Variational Inference
Quasi-Monte Carlo Variational Inference
Alexander K. Buchholz
F. Wenzel
Stephan Mandt
BDL
30
58
0
04 Jul 2018
A Simple Stochastic Variance Reduced Algorithm with Fast Convergence
  Rates
A Simple Stochastic Variance Reduced Algorithm with Fast Convergence Rates
Kaiwen Zhou
Fanhua Shang
James Cheng
24
74
0
28 Jun 2018
A Distributed Flexible Delay-tolerant Proximal Gradient Algorithm
A Distributed Flexible Delay-tolerant Proximal Gradient Algorithm
Konstantin Mishchenko
F. Iutzeler
J. Malick
21
22
0
25 Jun 2018
Stochastic Nested Variance Reduction for Nonconvex Optimization
Stochastic Nested Variance Reduction for Nonconvex Optimization
Dongruo Zhou
Pan Xu
Quanquan Gu
25
146
0
20 Jun 2018
Laplacian Smoothing Gradient Descent
Laplacian Smoothing Gradient Descent
Stanley Osher
Bao Wang
Penghang Yin
Xiyang Luo
Farzin Barekat
Minh Pham
A. Lin
ODL
22
43
0
17 Jun 2018
Stochastic Variance-Reduced Policy Gradient
Stochastic Variance-Reduced Policy Gradient
Matteo Papini
Damiano Binaghi
Giuseppe Canonaco
Matteo Pirotta
Marcello Restelli
21
174
0
14 Jun 2018
Towards Riemannian Accelerated Gradient Methods
Towards Riemannian Accelerated Gradient Methods
Hongyi Zhang
S. Sra
21
53
0
07 Jun 2018
Doubly Robust Bayesian Inference for Non-Stationary Streaming Data with
  $β$-Divergences
Doubly Robust Bayesian Inference for Non-Stationary Streaming Data with βββ-Divergences
Jeremias Knoblauch
Jack Jewson
Theodoros Damoulas
25
56
0
06 Jun 2018
Multi-Agent Reinforcement Learning via Double Averaging Primal-Dual
  Optimization
Multi-Agent Reinforcement Learning via Double Averaging Primal-Dual Optimization
Hoi-To Wai
Zhuoran Yang
Zhaoran Wang
Mingyi Hong
30
169
0
03 Jun 2018
Nonlinear Acceleration of CNNs
Nonlinear Acceleration of CNNs
Damien Scieur
Edouard Oyallon
Alexandre d’Aspremont
Francis R. Bach
23
11
0
01 Jun 2018
Stochastic algorithms with descent guarantees for ICA
Stochastic algorithms with descent guarantees for ICA
Pierre Ablin
Alexandre Gramfort
J. Cardoso
Francis R. Bach
CML
18
7
0
25 May 2018
Towards More Efficient Stochastic Decentralized Learning: Faster
  Convergence and Sparse Communication
Towards More Efficient Stochastic Decentralized Learning: Faster Convergence and Sparse Communication
Zebang Shen
Aryan Mokhtari
Tengfei Zhou
P. Zhao
Hui Qian
30
56
0
25 May 2018
LAG: Lazily Aggregated Gradient for Communication-Efficient Distributed
  Learning
LAG: Lazily Aggregated Gradient for Communication-Efficient Distributed Learning
Tianyi Chen
G. Giannakis
Tao Sun
W. Yin
34
297
0
25 May 2018
D$^2$: Decentralized Training over Decentralized Data
D2^22: Decentralized Training over Decentralized Data
Hanlin Tang
Xiangru Lian
Ming Yan
Ce Zhang
Ji Liu
20
348
0
19 Mar 2018
Constrained Deep Learning using Conditional Gradient and Applications in
  Computer Vision
Constrained Deep Learning using Conditional Gradient and Applications in Computer Vision
Sathya Ravi
Tuan Dinh
Vishnu Suresh Lokhande
Vikas Singh
AI4CE
33
22
0
17 Mar 2018
Previous
12345678
Next